Pursuant to 35 U.S.C. § 119 and the Paris Convention Treaty, this application claims the benefit of Chinese Patent Application No. 201710013589.2 filed Jan. 9, 2017, the contents of which are incorporated herein by reference. Inquiries from the public to applicants or assignees concerning this document or the related applications should be directed to: Matthias Scholl P.C., Attn.: Dr. Matthias Scholl Esq., 245 First Street, 18th Floor, Cambridge, MA 02142.
Field of the Invention
The invention relates to a method for improving a spurious free dynamic range (SFDR) and a signal-to-noise-and-distortion ratio (SNDR) of a capacitor-resistor combined successive approximation register (SAR) analog-to-digital converter (ADC) by capacitor re-configuration.
Description of the Related Art
Conventional methods for capacitor mismatch calibration of an ADC generally suffer from complicate algorithms, large chip occupation area, and high power consumption. A capacitor-resistor combined architecture is known, as shown in
In view of the above-described problems, it is one objective of the invention to provide a method for improving a SFDR and a SNDR of a capacitor-resistor combined SAR analog-to-digital converter by capacitor re-configuration. By sorting, selecting, and re-configuring the capacitors, the calibration of the capacitor mismatch is realized. The method of the invention is adapted to improve the SFDR and SNDR of ADC simultaneously on the premise of ensuring the sampling rate. No complex least-mean-square (LMS) algorithm is needed and on-chip calibration is realized.
To achieve the above objective, in accordance with one embodiment of the invention, there is provided a method for improving a SFDR and a SNDR of a capacitor-resistor combined SAR analog-to-digital converter by capacitor re-configuration. The method comprises:
Advantages of the method for improving the SFDR and the SNDR of the capacitor-resistor analog-to-digital converter by capacitor re-configuration according to embodiments of the invention are summarized as follows:
Capacitor mismatch calibration based on capacitor reconfiguring for SAR ADCs is applicable to any type of data converters. Capacitor reconfiguring only needs split the binary capacitive capacitors into unit capacitors, then adding more capacitors, measuring, sorting and reconfiguring all the unit capacitors to avoid the mismatch error accumulation in the middle point. Compared with the conventional complicated LMS algorithm calibration methods, the method of the invention does not sacrifice sampling rate, and is not sensitive to the environmental change, moreover, is much easier to realize on-chip calibration.
The invention is described hereinbelow with reference to the accompanying drawings, in which:
For further illustrating the invention, experiments detailing a method for improving a SI-DR and a SNDR of a capacitor-resistor combined SAR analog-to-digital converter by capacitor re-configuration are described below. It should be noted that the following examples are intended to describe and not to limit the invention.
Capacitor re-configuring method is proposed to enhance the linearity of capacitor-resistor combined SAR ADC by splitting the conventional binary capacitors into unary capacitors and adding some extra unit capacitors. The more unit capacitors added, the better the performance related to SFDR and SNDR, but more power is consumed. Here, only 64 groups of unit capacitors are added for compromises. The details of capacitor-reconfiguring technique proposed are shown in
As well known, the conventional 6-bit binary capacitive DAC contains 64 unit capacitors in the positive array, and the negative capacitor array is symmetrical with the positive capacitor array, so only positive array is described here for simplicity. Unary architecture is applied to achieve optimum static linearity (
Simulation Results:
To evaluate the improvement on the SFDR and SNDR of 14-bit capacitor-resistor combined ADC, the ADC is simulated in MATLAB instead of Cadence to avoid other circuit non-idealities, because the effectiveness of the calibration method is more concerned. In addition, MATLAB allows us to run extensive Monte Carlo simulations, which otherwise will be extremely time consuming to run in Cadence. In the simulation, only the capacitor mismatch is considered. The capacitor mismatch for every capacitor is randomly generated and the values of the unit capacitors are taken to be Gaussian random variables with standard deviations of 0.3%.
Table 1 and Table 2 conclude 500 Monte Carlo SFDR and SNDR simulation results. In table 1, by using the capacitor re-configuring technique, the improvements of the averaged SFDR is 19.5 dB, also, 12.3 dB improvement of averaged SNDR is achieved in Table 2.
Capacitor re-configuring proposed in the invention is adaptable to any kind of capacitive SAR ADC. The Simulation results demonstrate excellent SFDR and SNDR improvements by using the capacitor re-configuring method of the invention.
Unless otherwise indicated, the numerical ranges involved in the invention include the end values. While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2017 1 0013589 | Jan 2017 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6798370 | Nagano | Sep 2004 | B1 |
7893860 | Cho | Feb 2011 | B2 |
8760331 | Kaald | Jun 2014 | B2 |
9654132 | Venca | May 2017 | B2 |
20060158365 | Kernahan | Jul 2006 | A1 |
20080117090 | Barrenscheen | May 2008 | A1 |
20080204299 | Christ | Aug 2008 | A1 |
20080297381 | Kernahan | Dec 2008 | A1 |
20100123611 | Cho | May 2010 | A1 |
20110291571 | Fan | Dec 2011 | A1 |
20170201268 | Sharma | Jul 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20180198457 A1 | Jul 2018 | US |