The present invention relates to a method for improving the control behavior of motor vehicle control systems such as ABS, ESP, etc. comprising electrically driven hydraulic pumps, inlet and outlet valves and low-pressure accumulators, wherein the low-pressure accumulators accommodate, at least in part, pressure fluid that is discharged from wheel brakes in a control operation, wherein the hydraulic pumps are used to return the pressure fluid into a master cylinder, in particular tandem master cylinder, wherein the delivery behavior of the hydraulic pumps is controlled in dependence on pressure values, and wherein the actuation of the hydraulic pumps takes place in conformity with demand, i.e. by evaluating slip variation, and a computer program product.
DE 19632311 A1 discloses a control strategy for the actuation of a pump based on a pressure volume model, wherein the pump actuation is performed under the aspect of giving priority to the evacuation of the low-pressure accumulators. In this arrangement, the delivery rate of the hydraulic pump is dimensioned such that the time period between two successive phases of brake pressure reduction is sufficient for the complete evacuation of the low-pressure accumulators.
The prior-art pump actuation impairs the pedal comfort because the delivery volume flow is not in balance with the volume flow required (pressure increase pulses). Especially in situations where there is no risk of filling the low-pressure accumulators or when the pilot pressure exceeds the locking pressure level only slightly, a conventional pump actuation of this type is uncomfortable or even impairs the control quality (e.g. on a low coefficient of friction) because the pilot pressure is significantly modified due to an unbalanced return delivery. This change of the pilot pressure causes the known vibrating of the brake pedal during ABS intervention. The vibrating is the result of the brake pedal displacing in the direction of the vehicle bottom when pressure is built up because volume is consumed in a control operation. Hence, the brake pedal is moved in an opposite direction, towards the driver's foot, superimposed by the delivery pump's activity.
In view of the above, an object of the invention is to provide a method that significantly reduces any unwanted movement (vibrating) of the brake pedal during an ABS intervention by way of a purposeful pump actuation so that the pedal comfort is enhanced and the control quality improved, in particular in low coefficients-of-friction situations.
This object is achieved according to the invention by means of the described method for improving the control behavior of motor vehicle control systems.
It is preferred according to the method of the invention that the critical filling level of the low-pressure accumulator is fixed in response to vehicle-related conditions such as the variation of slip, wheel acceleration, pilot pressure, locking pressure level, etc. In a particularly preferred fashion, the critical filling level of the low-pressure accumulator is fixed by means of characteristic curves.
Further, it is preferred that in a pressure increase phase the pressure fluid is returned by means of the hydraulic pumps from the low-pressure accumulators into the master cylinder in such a fashion that the volume flow demand of the wheel brake is provided to the greatest possible extent by the delivery volume flow of the hydraulic pump so that any unwanted pedal movement due to volume flow differences is minimized.
It is also preferred that the volume flow demand of the wheel brake is stored in the form of volume characteristic curves.
The hydraulic pump is preferably actuated in response to the volume characteristic curves.
The invention also relates to a computer program product comprising the method of the invention.
Only one of the usually two brake circuits is shown in
The actuation is executed in consideration of the drifting of the hydraulic pump HP when said produces a still sufficient amount of volume flow. Drifting of the hydraulic pump HP is considered at a decreasing rate in order to ensure return delivery at a high pedal counterpressure (by way of the driver's foot). At low pilot pressures, drifting becomes a problem when actuation is initiated directly before a pressure reduction phase. This is especially the case when slip conditions prevail at several wheels. In this situation, a pressure reduction announcing itself (inlet valves closed) is detected by evaluation of the wheel acceleration and/or the slip variations (ACCF response, pause doubling), and pump actuation can be suppressed so that drifting does not continue until the reduction phase.
Also, the reduced actuation of the hydraulic pump HP or the suppression of the actuation has a decisive advantage in terms of control technology on low coefficients of friction, in connection with pilot pressures being only slightly in excess of the locking pressure level. In this situation, a rise of the pilot pressure because of the return delivery is avoided as no pressure fluid is conducted in front of the inlet valves, which would have as a result a tandem master cylinder pressure increase in this situation that is significant in relation to the prevailing locking pressure level due to the delivery ‘against the driver's pilot pressure’. Hence, the calculation of the buildup, which has the previous increase phase as a basis for the calculation, is not disturbed, and there is no shift from very long increase phases to very short increase phases. This enhances pedal comfort as well as the homogeneity of deceleration.
Partial filling of the low-pressure accumulator NDS can be accepted for a long period of time because no abrupt change from a low coefficient of friction to a considerably lower frictional value is allowed to occur. Only when the wheel pressures reproduced in a model or measured exhibit a value of almost zero, without a corresponding re-acceleration of the wheels being detected, will this comfort-oriented pump actuation be left and the known actuation activated.
Number | Date | Country | Kind |
---|---|---|---|
102 14 748 | Apr 2002 | DE | national |
103 09 418 | Mar 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP03/03426 | 4/2/2003 | WO | 00 | 9/15/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/082645 | 10/9/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5174636 | Burgdorf et al. | Dec 1992 | A |
5378055 | Maas et al. | Jan 1995 | A |
5560688 | Schappler et al. | Oct 1996 | A |
5918949 | Volz et al. | Jul 1999 | A |
6050652 | Kolbe et al. | Apr 2000 | A |
6155653 | Borchert | Dec 2000 | A |
20040080208 | Giers et al. | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
39 30 890 | Mar 1991 | DE |
39 36 386 | May 1991 | DE |
41 04 068 | Aug 1992 | DE |
42 22 954 | Jan 1994 | DE |
42 23 602 | Jan 1994 | DE |
42 32 614 | Mar 1994 | DE |
195 25 538 | Jan 1996 | DE |
44 40 517 | May 1996 | DE |
196 32 311 | Feb 1998 | DE |
197 08 142 | Sep 1998 | DE |
197 31 413 | Jan 1999 | DE |
198 16 290 | Apr 1999 | DE |
Number | Date | Country | |
---|---|---|---|
20050171671 A1 | Aug 2005 | US |