Method for Improving Yield and Production Intensity of Gluconobacter oxydans Sorbose

Information

  • Patent Application
  • 20200048670
  • Publication Number
    20200048670
  • Date Filed
    October 30, 2019
    5 years ago
  • Date Published
    February 13, 2020
    4 years ago
Abstract
The present disclosure relates to a method for improving the yield and production intensity of Gluconobacter oxydans (G. oxydans) sorbose, and belongs to the technical field of fermentation engineering. By knocking out genes related to formation of D-sorbitol or L-sorbose metabolic by-products in G. oxydans, the formation of the by-products is reduced, and the efficiency of transforming D-sorbitol into L-sorbose is improved, thereby improving the yield and production intensity of L-sorbose. A recombinant strain G. oxydan-11 constructed by the present disclosure, compared with a control strain, has an L-sorbose transformation rate of 96.12%, which is 4.47% higher than that of a wild strain, has a production intensity of 14 g/L·h, which is 14.7% higher than that of the wild strain, and has a fructose by-product content of only 5.6 g/L, which is 45.6% lower than that of the wild strain.
Description
TECHNICAL FIELD

The disclosure herein relates to a method for improving the yield and production intensity of Gluconobacter oxydans (G. oxydans) sorbose, and belongs to the technical field of fermentation engineering.


BACKGROUND

L-sorbose is a ketohexose, which is an important raw material for producing a direct precursor of vitamin C, 2-keto-L-gulonic acid (2-KLG for short). A method for industrially producing sorbose is mainly to ferment D-sorbitol to form L-sorbose by using G. oxydans. Sorbose further forms the direct precursor of vitamin C, 2-keto-L-gulonic acid (2-KLG for short), by a “microbial fermentation method” or “Reichstein method”. 2-KLG is subjected to lactonization and enolization to obtain Vitamin C. Therefore, the transformation rate of D-sorbitol to L-sorbose determines the transformation rate of vitamin C produced industrially.



G. oxydans is a major strain for industrially producing L-sorbose, and sorbitol dehydrogenase on its cell membrane may catalyze D-sorbitol to form L-sorbose. In addition to sorbitol dehydrogenase, the cell membrane of G. oxydans also contains a large quantity of other dehydrogenases, such as glucose dehydrogenase. Some of the dehydrogenases have a broad substrate spectrum, which may catalyze D-sorbitol to form other heterosaccharides such as fructose, thereby affecting the transformation rate of D-sorbitol to L-sorbose. A G. oxydans genome is modified by a genetic engineering means, and part of a dehydrogenase gene of G. oxydans is knocked out, which is expected to solve the problem of accumulation of by-products such as fructose in a fermentation process.


At present, research on the production of L-sorbose by a microbial fermentation method mainly focuses on the optimization and control of the fermentation process of G. oxydans, but there are few reports on the molecular modification of the G. oxydans genome. Although simple fermentation optimization may reduce the production of by-products to a certain extent, it cannot fundamentally solve the problem of accumulation of by-products in the fermentation process. With the development of a gene sequencing technology, metabolic engineering, synthetic biology and other methods and technologies, the G. oxydans genome is modified at a molecular level, which is expected to fundamentally overcome the defects of traditional strains in the fermentation process. At present, the overexpression of sorbitol dehydrogenase by a metabolic engineering method may improve the production intensity of sorbose and shorten a fermentation period, but merely the overexpression of sorbitol dehydrogenase cannot solve the problem that other dehydrogenases catalyze D-sorbitol to form by-products in the fermentation process.


SUMMARY

The present disclosure provides a method for enhancing the production intensity and transformation rate of L-sorbose by fermentation by knocking out dehydrogenase genes forming metabolic by-products thereof.


The present disclosure is firstly directed to a method for improving the yield and production intensity of L-sorbose by modifying a G. oxydans genome to knock out genes related to formation of an L-sorbose metabolic by-product.


In an embodiment of the present disclosure, the genes related to formation of the metabolic byproduct include: GDH, GA-5-DH, XDH2, ALDH, XDH, sDH SLC, PTS, PQQ-dependent DH3, NADH-DH, and NADH-dependent ADH genes.


In an embodiment of the present disclosure, the GDH contains a nucleotide sequence shown in SEQ ID NO. 1; the GA-5-DH contains a nucleotide sequence shown in SEQ ID NO. 2; the XDH2 contains a nucleotide sequence shown in SEQ ID NO. 3; the ALDH contains a nucleotide sequence shown in SEQ ID NO. 4; the XDH contains a nucleotide sequence shown in SEQ ID NO. 5; the sDH SLC contains a nucleotide sequence shown in SEQ ID NO. 6; the PTS contains a nucleotide sequence shown in SEQ ID NO. 7; the PQQ-dependent DH3 contains a nucleotide sequence shown in SEQ ID NO. 8; the NADH-DH contains a nucleotide sequence shown in SEQ ID NO. 9; and the NADH-dependent ADH contains a nucleotide sequence shown in SEQ ID NO. 10.


In an embodiment of the present disclosure, the production strain uses G. oxydans CGMCC 1.110 as an original strain.


The present disclosure is secondly directed to a recombinant strain for improving the transformation rate and production intensity of L-sorbose. Genes related to formation of major metabolic by-products generated by synthesis of sorbose in a metabolic pathway of L-sorbose produced by the recombinant strain are knocked out. The major metabolic byproducts include, but not limited to, fructose.


In an embodiment of the present disclosure, the genes related to formation of the major metabolic byproducts include: GDH, GA-5-DH, XDH2, ALDH, XDH, sDH SLC, PTS, PQQ-dependent DH3, NADH-DH, and NADH-dependent ADH genes.


In an embodiment of the present disclosure, the recombinant strain uses G. oxydans as a host.


In an embodiment of the present disclosure, the recombinant strain uses G. oxydans CGMCC 1.110 as a host, and at least one of GDH, GA-5-DH, XDH2, ALDH, XDH, sDH SLC, PTS, PQQ-dependent DH3, NADH-DH, and NADH-dependent ADH genes is knocked out by a homologous recombination method.


The present disclosure is thirdly directed to a method for constructing the recombinant strain. The method includes: respectively amplifying 1000 bp sequences of a target gene in the upstream and downstream of a G. oxydans CGMCC 1.110 genome, and fusing with a resistance gene and a negative selective marker gene to construct a knockout box: left homologous arm (HAL)-resistance gene-negative selective marker gene-right homologous arm (HAR); ligating the knockout box to a vector and transforming into a competent cell of G. oxydans; carrying out first screening in a resistance marker-containing D-sorbitol medium, and carrying out second screening in a negative selective marker analog-containing D-sorbitol medium.


In an embodiment of the present disclosure, the resistance gene is a gene encoding antibiotic resistance, including but not limited to, kanamycin resistance and ampicillin resistance.


In an embodiment of the present disclosure, the negative selective marker gene is an upp gene, and a negative selective marker analog is 5-fluorouracil.


In an embodiment of the present disclosure, the method specifically includes: respectively amplifying 1000 bp sequences of the target gene in the upstream and downstream of the G. oxydans CGMCC 1.110 genome, and fusing with the kana resistance gene and the upp gene to construct a knockout box: left homologous arm (HAL)-kana-upp-right homologous arm (HAR); ligating the knockout box to a pMD19-T vector; transforming a correctly sequenced knockout box fragment into a competent cell of G. oxydans, carrying out first screening in a kanamycin-containing D-sorbitol medium, and carrying out second screening in a 5-fluorouracil-containing D-sorbitol medium to finally obtain G. oxydans, i.e., G. oxydans-1, G. oxydans-2, G. oxydans-3, G. oxydans-4, G. oxydans-5, G. oxydans-6, G. oxydans-7, G. Oxydans-8, G. oxydans-9, G. oxydans-10 and G. oxydans-11.


In an embodiment of the present disclosure, an upp gene sequence is shown in SEQ ID NO. 11.


The present disclosure is fourthly directed to a method for producing L-sorbose by fermentation using the recombinant strain. The method includes the steps of activating the recombinant strain, inoculating into a fermentation medium, and fermenting and culturing under the conditions of 28 to 30° C. and 200 to 220 rpm.


In an embodiment of the present disclosure, the fermentation medium contains 280 to 350 g of D-sorbitol, 0.4 to 0.6 g of yeast extract, 1.5 to 2.5 g of liquid corn syrup, and 0.5 to 1 g of light calcium carbonate per L.


In an embodiment of the present disclosure, a seed medium contains 180 to 200 g of D-sorbitol, 6 to 8 g of yeast extract, and 2 to 4 g of calcium carbonate per L.


In an embodiment of the present disclosure, the fermentation medium contains 280 to 350 g of D-sorbitol, 0.4 to 0.6 g of yeast extract, 1.5 to 2.5 g of liquid corn syrup, 0.5 to 1 g of light calcium carbonate, and 0.2 g of defoamer per L.


In an embodiment of the present disclosure, a seed liquid is directly inoculated into a conical flask by a glycerin tube to be cultured for 48 h to obtain a first-stage seed, and the OD600 of the first-stage seed is about 2 to 3; the first-stage seed is transferred at an inoculation quantity of 1%, and cultured for 24 h to obtain a fermentation seed liquid, having OD600 of about 2 to 3; and the fermentation seed liquid is transferred to a fermentor at an inoculation quantity of 25%, and fermented at a temperature of 37° C.


The present disclosure also claims disclosure of the method in preparation of an L-sorbose-containing product.


The beneficial effects are as follows: the methods of the present disclosure may improve the yield and production intensity of L-sorbose; the recombinant strain G. oxydan-11 constructed according to the present disclosure, compared with a control strain G. oxydans CGMCC 1.110, has an L-sorbose transformation rate of 96.12%, which is 4.47% higher than that of the control strain, has a production intensity of 14 g/L·h, which is 14.7% higher than that of a wild strain, and has a fructose by-product content of only 5.6 g/L, which is 45.6% lower than that of the wild strain







DETAILED DESCRIPTION

Determination of sorbitol and sorbose: detection was carried out by high performance liquid chromatography (HPLC). Instrument: Agilent 1260 high performance liquid chromatograph (equipped with an UV-Vis detector and a refractive index detector); chromatographic conditions: Aminex HPX-87H (Bio-Rad), mobile phase: dilute H2SO4, concentration: 5 mmol·L−1, flow rate: 0.5 mL·min−1, column temperature: 40° C., and injection volume: 10 μL. (by-products were detected) at 210 nm, and L-sorbose was detected by the refractive index detector; sample preparation: 1 mL of a fermentation broth was centrifuged at 12,000 rpm for 5 min, and a supernatant was appropriately diluted and filtered through a 0.22 μl filter membrane to be subjected to high performance liquid chromatography analysis.


A seed medium (g/L) containing 200 g of D-sorbitol and 10 g of yeast powder was diluted to 1 L in deionized water.


A sorbitol medium for screening, containing 50 g of D-sorbitol and 10 g of yeast powder, was diluted to 1 L in deionized water. A solid medium was added with 2% of agar. (Final concentration of cefoxitin antibiotic: 50 mg/L, final concentration of kana antibiotic: 50 mg/L, and final concentration of 5-fluorouracil: 300 mg/L).


An LB medium containing 10 g of peptone, 5 g of yeast powder, and 10 g of sodium chloride was adjusted to the constant volume of 1 L with deionized water. A solid medium was added with 2% of agar. (Final concentration of ampicillin antibiotic: 100 mg/L).





Production intensity calculation=total mass of L-sorbose in final fermentation broth/(volume of fermentation broth*total fermentation time).









TABLE 1







Primers used for gene knockout











Sequence


Primer Name
Primers (5′-3′)
Number





UPP-F
GACGCCCCTCAGATCGACACGGT
SEQ ID NO. 12





UPP-R
CAGAGCTTTTCGGGCTGCCTGTAC
SEQ ID NO. 13





UPP-CZ-F
ATTCCACCGCCGCCTTCTATGAAAGGAACCTCAGATT
SEQ ID NO. 14



TTCTGGAGACTGACCA






UPP-CZ-R
CGAGGAAGCGCCTGAAAACATTGTCTTAACCGGCCAT
SEQ ID NO. 15



AAAACGGCATGGTAT






Kana-F
TAAACGGACGCACTGGATCTCCTGATGAGGTATTTGG
SEQ ID NO. 16



AATGAGTCGCCGTCA






Kana-R
GTCAGTCTCCAGAAAATCTGAGGTTCCTTTCATAGAA
SEQ ID NO. 17



GGCGGCGGTGGAA






GDH-F
GCAGCCCAACCCAGCCGATGAT
SEQ ID NO. 18





GDH-R
CATTCTTTCAAGGGCGCAGACCAT
SEQ ID NO. 19





GDH-CZ-F
CCTTCAATATGGTACGCGCTCCTG
SEQ ID NO. 20





GDH-CZ-R
AGCTGTAACCATTCAAGGCTGGCG
SEQ ID NO. 21





GDH-upp-kana-F
AGCGCGTACCATATTGAAGG
SEQ ID NO. 22



TGGCGGATCGGCGTAACG






GDH-upp-kana-R
AGCCTTGAATGGTTACAGCTCGTGTTTCTGCGGTGTG
SEQ ID NO. 23



GTGAC






GA-5-DH-F
GAAAAGATCCCGGACAGATTGGC
SEQ ID NO. 24





GA-5-DH-R
CGTAGTTGGCCGTCAGGTTGAAAT
SEQ ID NO. 25





GA-5-DH-CZ-F
GGAAGTCGCGCAATGATCATGTCC
SEQ ID NO. 26





GA-5-DH-CZ-R
AGAATTTCAGCCGTCATAGTGGTG
SEQ ID NO. 27





GA-5-DH-upp-
ATGATCATTGCGCGACTTCCTGGCGGATCGGCGTAAC
SEQ ID NO. 28


kana-F
G






GA-5-DH-upp-
ACTATGACGGCTGAAATTCTCGTGTTTCTGCGGTGTG
SEQ ID NO. 29


kana-R
GTGAC






XDH2-F
AGTCACCTGATCTGGATTGGCG
SEQ ID NO. 30





XDH2-R
TTCCATGCAAGAGAAGGGGACC
SEQ ID NO. 31





XDH2-CZ-F
TCCTGCAATGCCTCAATCGTTC
SEQ ID NO. 32





XDH2-CZ-R
TGAATCAGGGGTGCAGACTGG
SEQ ID NO. 33





XDH2-upp-kana-F
ACGATTGAGGCATTGCAGGATGGCGGATCGGCGTAA
SEQ ID NO. 34



CG






XDH2-upp-kana-R
TCTGCACCCCTGATTCACGTGTTTCTGCGGTGTGGTGA
SEQ ID NO. 35



C






ALDH-F
TGCTCATCCACCAGATACCCGAT
SEQ ID NO. 36





ALDH-R
TCTGCACTAAGAGTCGCCGCGTT
SEQ ID NO. 37





ALDH-CZ-F
GCTTGTGCGTCATATAGTCGTGGAAA
SEQ ID NO. 38





ALDH-CZ-R
GGAGGGAGGCCGAATGCACGATG
SEQ ID NO. 39





ALDH-upp-kana-F
CGACTATATGACGCACAAGCTGGCGGATCGGCGTAAC
SEQ ID NO. 40



G






ALDH-upp-kana-R
CGTGCATTCGGCCTCCCTCCCGTGTTTCTGCGGTGTGG
SEQ ID NO. 41



TGAC






XDH-F
CAGGTCCATGCCTTCAATCAGCGTC
SEQ ID NO. 42





XDH-R
GCATGATCCCCAAGGCCATACACACT
SEQ ID NO. 43





XDH-CZ-R
AAACGCTGGCCCGCTTTCACATG
SEQ ID NO. 44





XDH-CZ-F
TATTGATCCGATGCCCCTGACGGTT
SEQ ID NO. 45





XDH-upp-kana-F
TCAGGGGCATCGGATCAATATGGCGGATCGGCGTAAC
SEQ ID NO. 46



GTAGC






XDH-upp-kana-R
GTGAAAGCGGGCCAGCGTTTCGTGTTTCTGCGGTGTG
SEQ ID NO. 47



GTGAC






sDH SLC-F
CTAACAGGCGCTTACGATGAGGTCT
SEQ ID NO. 48





sDH SLC-R
CTACCTGCACAAAACGTCCCGA
SEQ ID NO. 49





sDH SLC-CZ-F
GAGGCGACGAGACACTTCGAAGA
SEQ ID NO. 50





sDH SLC-CZ-R
TACAAGCCTCGGGTATCGCCATTC
SEQ ID NO. 51





sDH SLC-upp-
CGATACCCGAGGCTTGTATGGCGGATCGGCGTAACGT
SEQ ID NO. 52


kana-F
AGC






sDH SLC-upp-
TCGAAGTGTCTCGTCGCCTCCGTGTTTCTGCGGTGTGG
SEQ ID NO. 53


kana-R
TGA






PTS-F
ATCATGTCGCCTGCAAATCGTTAT
SEQ ID NO. 54





PTS-R
AGCGGCTTCGGCACAAAGTCC
SEQ ID NO. 55





PTS-CZ-F
TTGGAATTGTGGGGGTGGGAGAT
SEQ ID NO. 56





PTS-CZ-R
CACAAATCTCCGGGAAAACTGCCAT
SEQ ID NO. 57





PTS-upp-kana-F
AGTTTTCCCGGAGATTTGTGTGGCGGATCGGCGTAAC
SEQ ID NO. 58



GTAGC






PTS-upp-kana-R
CCCACCCCCACAATTCCAACGTGTTTCTGCGGTGTGG
SEQ ID NO. 59



TGAC






PQQ-dependent
GCAGCCCAACCCAGCCGATGAT
SEQ ID NO. 60


DH3-F







PQQ-dependent
CATTCTTTCAAGGGCGCAGACCAT
SEQ ID NO. 61


DH3-R







PQQ-dependent
CCTTCAATATGGTACGCGCTCCTG
SEQ ID NO. 62


DH3-CZ-F







PQQ-dependent
AGCTGTAACCATTCAAGGCTGGCG
SEQ ID NO. 63


DH3-CZ-R







PQQ-dependent
AGCGCGTACCATATTGAAGG
SEQ ID NO. 64


DH3-upp-kana-F
TGGCGGATCGGCGTAACG






PQQ-dependent
AGCCTTGAATGGTTACAGCTCGTGTTTCTGCGGTGTG
SEQ ID NO. 65


DH3-upp-kana-R
GTGAC






NADH-DH-F
TTGTCGGAACACACCTGAAAACACGG
SEQ ID NO. 66





NADH-DH-R
ATCCAATCCGTTACGCTCCCTACACC
SEQ ID NO. 67





NADH-DH-CZ-R
ATATTCAGGCTTCAGGTTTCCAGGC
SEQ ID NO. 68





NADH-DH-CX-R
GGAAGCATTCTCACGCCCTATGACC
SEQ ID NO. 69





NADH-DH-upp-
TGAAGATCGGTTTTCTGGTCTGGCGGATCGGCGTAAC
SEQ ID NO. 70


kana-F
GTAGC






NADH-DH-upp-
AAACCTGAAGCCTGAATATCGTGTTTCTGCGGTGTGG
SEQ ID NO. 71


kana-R
TGAC






NADH-dependent
GCCGGCCATGATTGTTACGGTACT
SEQ ID NO. 72


ADH-F







NADH-dependent
AAACGCATTTCCCTTCCGCATCAC
SEQ ID NO. 73


ADH-R







NADH-dependent
CCTCAAATAGAAGTCTGGCTCGGCT
SEQ ID NO. 74


ADH-CZ-F







NADH-dependent
TCAATTACCGAGGCTCAACAGGGT
SEQ ID NO. 75


ADH-CZ-R







NADH-dependent
CAGACTTCTATTTGAGGCTGGCGGATCGGCGTAACGT
SEQ ID NO. 76


ADH-upp-kana-F
AGC






NADH-dependent
TGTTGAGCCTCGGTAATTGACGTGTTTCTGCGGTGTG
SEQ ID NO. 77


ADH-upp-kana-R
GTGAC









Example 1: Construction of Knockout Box of Genes

Primers UPP-F and UPP-R were subjected to PCR to obtain an upp gene fragment using a G. oxydans CGMCC 1.110 genome as a template; primers kana-F and Kana-R were subjected to PCR to obtain a kana gene fragment using pBBR1MCS-2 as a template; an upp gene was amplified by primers using the G. oxydans CGMCC 1.110 genome as a template, 1000 bp sequences in the upstream and downstream of the gene to be knocked out were amplified by using the G. oxydans CGMCC 1.110 genome as a template, and the above four fragments were ligated by fusion PCR to construct a gene knockout box: left homologous arm (HAL)-kana-upp-right homologous arm (HAR), and the knockout box was ligated to a pMD-19-T vector, and transformed into a competent cell JM109 of Escherichia coli, transformants were coated on an ampicillin (100 mg/L)-containing LB plate to be screened and sequenced, and a correctly sequenced strain was preserved.


Example 2: Construction of Recombinant Strain G. oxydans-1

A knockout box: GDHL-kana-upp-GDHR for knocking out a GDH gene was constructed according to the method of Example 1, including the following specific steps: utilizing primers GDH-F and GDH-CZ-R to obtain a 1000 bp fragment GDHL of a left arm of the GDH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template; utilizing primers GDH-R and GDH-CZ-F to obtain a 1000 bp fragment GDHR of a right arm of the GDH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template, utilizing primers GDH-upp-kana-F and GDH-upp-kana-R to obtain an upp-kana gene fragment GDH-upp-kana by PCR using the kana-upp constructed in Example 1 as a template, and performing a fusion PCR method on GDH-upp-kana, GDHL and GDHR to obtain GDHL-kana-upp-GDHR. Since the constructed dehydrogenase knockout box carried the kana (the gene sequence was shown in Genbank accession number: MH539767.1)-upp gene, the correctly sequenced dehydrogenase knockout box fragment was transformed into a G. oxydans recipient CGMCC 1.110 to obtain an upp gene-defected strain G. oxydans (knockout gene: kana-upp), which normally grows in a kanamycin and cefoxitin-containing D-sorbitol medium; and after a first round of screening by kana antibiotics, a second round of screening was performed in a 5-fluorouracil (300 mg/L) and cefoxitin (50 mg/L)-containing D-sorbitol medium to obtain a recombinant strain G. oxydans-1 in which the GDH gene was knocked out.


Example 3: Construction of Recombinant Strain G. oxydans-2

A knockout box: GA-5-DHL-kana-upp-GA-5-DHR for knocking out a GA-5-DHR gene was constructed according to the method of Example 1, including the following steps: utilizing primers GA-5-DH-F and GA-5-DH-CZ-R to obtain a 1000 bp fragment GA-5-DHL of a left arm of the GA-5-DH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template; utilizing primers GA-5-DH-F and GA-5-DH-CZ-R to obtain a 1000 bp fragment GA-5-DHR of a right arm of the GA-5-DH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template, utilizing primers GA-5-DH-upp-kana-F and GA-5-DH-upp-kana-R to obtain a GA-5-DH-upp-kana gene fragment by PCR using the kana-upp constructed in Example 1 as a template, and performing a fusion PCR method on GA-5-DH-upp-kana, GA-5-DHL and GA-5-DHR to obtain GA-5-DHL-kana-upp-GA-5-DHR. The correctly sequenced dehydrogenase knockout box fragment was transformed into G. oxydans CGMCC 1.110 to obtain a recombinant strain G. oxydans-02 in which the GA-5-DH gene was knocked out after screening according to the same method above.


Example 4: Construction of Recombinant Strain G. oxydans-3

A knockout box XDH2L-kana-upp-NAD-XDH2R for knocking out an XDH2 gene was constructed according to the method of Example 1, including the following steps: utilizing primers XDH2-F and XDH2-CZ-R to obtain a 1000 bp fragment XDH2L of a left arm of the XDH2 gene by PCR using the G. oxydans CGMCC 1.110 genome as a template; utilizing primers XDH2-R and XDH2-CZ-F to obtain a 1000 bp fragment XDHR2 of a right arm of the XDH2 gene by PCR using the G. oxydans CGMCC 1.110 genome as a template, utilizing primers XDH2-upp-kana-F and XDH2-upp-kana-R to obtain an XDH2-upp-kana gene fragment by PCR using the kana-upp constructed in Example 1 as a template, and performing a fusion PCR method on XDH2-kana-upp, XDH2L and XDH2R to obtain XDH2L-kana-upp-XDH2R. The correctly sequenced dehydrogenase knockout box fragment was transformed into G. oxydans CGMCC 1.110 to obtain a recombinant strain G. oxydans-03 in which the XDH2 gene was knocked out after screening according to the above same method.


Example 5: Construction of Recombinant Strain G. oxydans-4

A knockout box ALDHL-kana-upp-ALDHR for knocking out an ALDH gene was constructed according to the method of Example 1, including the following steps: utilizing primers ALDH-F and ALDH-CZ-R to obtain a 1000 bp fragment ALDHL of a left arm of the ALDH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template; utilizing primers ALDH-R and ALDH-CZ-F to obtain a 1000 bp fragment ALDHR of a right arm of the ALDH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template, utilizing primers ALDH-upp-kana-F and ALDH-upp-kana-R to obtain an ALDH-upp-kana gene fragment by PCR using the kana-upp constructed in Example 1 as a template, and performing a fusion PCR method on ALDH-kana-upp, ALDHL and ALDHR to obtain ALDHL-kana-upp-ALDHR. The correctly sequenced dehydrogenase knockout box fragment was transformed into G. oxydans CGMCC 1.110 to obtain a recombinant strain G. oxydans-04 in which the ALDH gene was knocked out after screening according to the same method above.


Example 6: Construction of Recombinant Strain G. oxydans-5

A knockout box XDHL-kana-upp-XDHR for knocking out an XDH gene was constructed according to the method of Example 1, including the following steps: utilizing primers XDH-F and XDH-CZ-R to obtain a 1000 bp fragment XDHL of a left arm of the XDH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template; utilizing primers XDH-R and XDH-CZ-F to obtain a 1000 bp fragment XDHR of a right arm of the XDH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template, utilizing primers XDH-upp-kana-F and XDH-upp-kana-R to obtain an XDH-upp-kana gene fragment by PCR using the kana-upp constructed in Example 1 as a template, and performing a fusion PCR method on XDH-kana-upp, XDHL and XDHR to obtain XDHL-kana-upp-XDHR. The correctly sequenced dehydrogenase knockout box fragment was transformed into G. oxydans CGMCC 1.110 to obtain a recombinant strain G. oxydans-05 in which the XDH gene was knocked out after screening according to the same method above.


Example 7: Construction of Recombinant Strain G. oxydans-6

A knockout box sDH SLCL-kana-upp-sDH SLCR for knocking out an sDH SLC gene was constructed according to the method of Example 1, including the following steps: utilizing primers SLC-F and SLC-CZ-R to obtain a 1000 bp fragment sDH SLCL of a left arm of the sDH SLC gene by PCR using the G. oxydans CGMCC 1.110 genome as a template; utilizing primers SLC-R and SLC-CZ-F to obtain a 1000 bp fragment SLC-R of a right arm of the sDH SLC gene by PCR using the G. oxydans CGMCC 1.110 genome as a template, utilizing primers sDH SLC-upp-kana-F and sDH SLC-upp-kana-R to obtain an sDH SLC-upp-kana gene fragment by PCR using the kana-upp constructed in Example 1 as a template, and performing a fusion PCR method on sDH SLC-kana-upp, sDH SLCL and sDH SLCR to obtain sDH SLCL-kana-upp-sDH SLCR. The correctly sequenced dehydrogenase knockout box fragment was transformed into G. oxydans CGMCC 1.110 to obtain a recombinant strain G. oxydans-06 in which the sDH SLC gene was knocked out after screening according to the same method above.


Example 8: Construction of Recombinant Strain G. oxydans-7

A knockout box: PTSL-kana-upp-PTSR for knocking out a PTS gene was constructed according to the method of Example 1, including the following steps: utilizing primers PTS-F and PTS-CZ-R to obtain a 1000 bp fragment PTSL of a left arm of the PTS gene by PCR using the G. oxydans CGMCC 1.110 genome as a template; utilizing primers PTS-R and PTS-CZ-F to obtain a 1000 bp fragment PTSR of a right arm of the PTS gene by PCR using the G. oxydans CGMCC 1.110 genome as a template, utilizing primers PTS-upp-kana-F and PTS-upp-kana-R to obtain a PTS-upp-kana gene fragment by PCR using the kana-upp constructed in Example 1 as a template, and performing a fusion PCR method on PTS-kana-upp, PTSL and PTSR to obtain PTSL-kana-upp-PTSR. The correctly sequenced dehydrogenase knockout box fragment was transformed into G. oxydans CGMCC 1.110 to obtain a recombinant strain G. oxydans-07 in which the PTS gene was knocked out after screening according to the same method above.


Example 9: Construction of Recombinant Strain G. oxydans-8

A knockout box PQQ-dependent DH3L-kana-upp-PQQ-dependent DH3R for knocking out a PQQ-dependent DH3 gene was constructed according to the method of Example 1, including the following steps: utilizing primers PQQ-dependent DH3-F and PQQ-dependent DH3-CZ-R to obtain a 1000 bp fragment PQQ-dependent DH3L of a left arm of a PQQ-dependent DH3 gene by PCR using the G. oxydans CGMCC 1.110 genome as a template; utilizing primers PQQ-dependent DH3-R and PQQ-dependent DH3-CZ-F to obtain a 1000 bp fragment PQQ-dependent DH3R of a right arm of the PQQ-dependent DH3 gene by PCR using the G. oxydans CGMCC 1.110 genome as a template, utilizing primers PQQ-dependent DH3-upp-kana-F and PQQ-dependent DH-upp-kana-R to obtain a PQQ-dependent DH3-upp-kana gene fragment by PCR using the kana-upp constructed in Example 1 as a template, and performing a fusion PCR method on PQQ-dependent DH3-kana-upp, PQQ-dependent DH3L and PQQ-dependent DH3R to obtain PQQ-dependent DH3L-kana-upp-PQQ-dependent DH3R. The correctly sequenced dehydrogenase knockout box fragment was transformed into G. oxydans CGMCC 1.110 to obtain a recombinant strain G. oxydans-08 in which the PQQ-dependent DH3 gene was knocked out after screening according to the same method above.


Example 10: Construction of Recombinant Strain G. oxydans-9

A knockout box NADH-DHL-kana-upp-NADH-DHR for knocking out an NADH-DH gene was constructed according to the method of Example 1, including the following steps: utilizing primers NADH-DH-F and NADH-DH-CZ-R to obtain a 1000 bp fragment NADH-DHL of a left arm of the NADH-DH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template; utilizing primers NADH-DH-R and NADH-DH-CZ-F to obtain a 1000 bp fragment NADH-DHR of a right arm of the NADH-DH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template, utilizing primers NADH-DH-upp-kana-F and NADH-DH-upp-kana-R to obtain an NADH-DH-upp-kana gene fragment by PCR using the kana-upp constructed in Example 1 as a template, and performing a fusion PCR method on NADH-DH-kana-upp, NADH-DHL and NADH-DHR to obtain NADH-DHL-kana-upp-NADH-DHR. The correctly sequenced dehydrogenase knockout box fragment was transformed into G. oxydans CGMCC 1.110 to obtain a recombinant strain G. oxydans-09 in which the NADH-DH gene was knocked out after screening according to the same method above.


Example 11: Construction of Recombinant Strain G. oxydans-10

A knockout box NADH-dependent ADHL-kana-upp-NADH-dependent ADHR for knocking out an NADH-dependent ADH gene was constructed according to the method of Example 1, including the following steps: utilizing primers NADH-dependent ADH-F and NADH-dependent ADH-CZ-R to obtain a 1000 bp fragment NADH-dependent ADHL of a left arm of the NADH-dependent ADH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template; utilizing primers NADH-dependent ADH-R and NADH-dependent ADH-CZ-F to obtain a 1000 bp fragment NADH-dependent ADHR of a right arm of the NADH-dependent ADH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template, utilizing primers NADH-dependent ADH-upp-kana-F and NADH-dependent ADH-upp-kana-R to obtain an NADH-dependent ADH-upp-kana gene fragment by PCR using the kana-upp constructed in Example 1 as a template, and performing a fusion PCR method on NADH-dependent ADH-kana-upp, NADH-dependent ADHL and NADH-dependent ADHR to obtain NADH-dependent ADHL-kana-upp-NADH-dependent ADHR. The correctly sequenced dehydrogenase knockout box fragment was transformed into G. oxydans CGMCC 1.110 to obtain a recombinant strain G. oxydans-10 in which the NADH-dependent ADH gene was knocked out after screening according to the same method above.


Example 12: Construction of Recombinant Strain G. oxydans-11

(1) A knockout box: GDHL-kana-upp-GDHR for knocking out the GDH gene was constructed according to the method of Example 2 (utilizing primers GDH-F and GDH-CZ-R to obtain a 1000 bp fragment GDHL of a left arm of the GDH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template; utilizing primers GDH-R and GDH-CZ-F to obtain a 1000 bp fragment GDHR of a right arm of the GDH gene by PCR using the G. oxydans CGMCC 1.110 genome as a template, utilizing primers GDH-upp-kana-F and GDH-upp-kana-R to obtain an upp-kana gene fragment GDH-upp-kana by PCR using the kana-upp constructed in Example 1 as a template, and performing a fusion PCR method on GDH-upp-kana, GDHL and GDHR to obtain GDHL-kana-upp-GDHR). Since the dehydrogenase knockout box carried the kana (Genbank accession number: MH539767.1)-upp gene, the correctly sequenced dehydrogenase knockout box fragment was transformed into the G. oxydans recipient CGMCC 1.110 to obtain an upp gene-defected strain G. oxydans (knockout gene: kana-upp), which normally grows in a kanamycin and cefoxitin-containing D-sorbitol medium; after a first round of screening by kana antibiotics, a second round of screening was performed in the 5-fluorouracil (300 mg/L) and cefoxitin (50 mg/L)-containing D-sorbitol medium to obtain the recombinant strain G. oxydans in which the GDH gene was knocked out;


(2) according to the steps in Example 3, the constructed knockout box GA-5-DHL-kana-upp-GA-5-DHR was transformed into the G. oxydans recombinant strain constructed in step (1), and a recombinant strain in which the GDH and GA-5-DH genes were knocked out was obtained after screening according to the same method as in step (1);


(3) according to the steps in Example 4, the constructed knockout box XDH2L-kana-upp-NAD-XDH2R was transformed into the G. oxydans recombinant strain constructed in step (2), and a recombinant strain in which the GDH, GA-5-DHXDH2 and XDH2 genes were knocked out was obtained after screening according to the same method as above;


(4) according to the steps in Example 5, the constructed knockout box ALDHL-kana-upp-ALDHR was transformed into the G. oxydans recombinant strain constructed in step (3), and a recombinant strain in which the GDH, GA-5-DHXDH, XDH2 and ALDH genes were knocked out was obtained after screening according to the same method as above;


(5) according to the steps in Example 6, the constructed knockout box XDHL-kana-upp-XDHR was transformed into the G. oxydans recombinant strain constructed in step (4), and a recombinant strain in which the GDH, GA-5-DHXDH, XDH2, ALDH and XDH genes were knocked out was obtained after screening according to the same method as above;


(6) according to the steps in Example 7, the constructed knockout box sDH SLCL-kana-upp-sDH SLCR was transformed into the G. oxydans recombinant strain constructed in step (5), and a recombinant strain in which the GDH, GA-5-DHXDH, XDH2, ALDH, XDH and sDH SLC genes were knocked out was obtained after screening according to the same method as above;


(7) according to the steps in Example 8, the constructed knockout box sDH PTSL-kana-upp-PTSR was transformed into the G. oxydans recombinant strain constructed in step (6), and a recombinant strain in which the GDH, GA-5-DHXDH, XDH2, ALDH, XDH, sDH SLC and PTS genes were knocked out was obtained after screening according to the same method as above;


(8) according to the steps in Example 9, the constructed knockout box PQQ-dependent DH3 was transformed into the G. oxydans recombinant strain constructed in step (7), and a recombinant strain in which the GDH, GA-5-DHXDH, XDH2, ALDH, XDH, sDH SLC, PTS and PQQ-dependent DH3 genes were knocked out was obtained after screening according to the same method as above;


(9) according to the steps in Example 10, the constructed knockout box NADH-DH was transformed into the G. oxydans recombinant strain constructed in step (8), and a recombinant strain in which the GDH, GA-5-DHXDH, XDH2, ALDH, XDH, sDH SLC, PTS, PQQ-dependent DH3 and NADH-DH genes were knocked out was obtained after screening according to the same method as above; and


(10) according to the steps in Example 11, the constructed knockout box NADH-DH was transformed into the G. oxydans recombinant strain constructed in step (9), and a recombinant strain G. oxydans-11 (G. oxydans CGMCC 1.110 (AGDH, GA-5-DH, XDH2, ALDH, XDH, sDH SLC, PTS, PQQ-dependent DH3, NADH-DH, NADH-dependent ADH) in which the GDH, GA-5-DH, XDH2, ALDH, XDH, sDH SLC, PTS, PQQ-dependent DH3, NADH-DH and NADH-dependent ADH genes were knocked out was obtained after screening according to the same method above.


Example 13: Production of Sorbose by Fermentation Using Recombinant Strain and Control Strain

The recombinant strain G. oxydans-10 prepared in Example 11 and a control strain G. oxydans CGMCC 1.110 were selected and respectively activated and cultured on a seed medium for 24 to 36 h, and the above-mentioned activated and cultured seed liquids were respectively inoculated into a fermentation medium (containing, by g/L, 280 to 350 g of D-sorbitol, 0.4 to 0.6 g of yeast extract, 1.5 to 2.5 g of liquid corn syrup, and 0.5 to 1 g of light calcium carbonate) at an inoculation quantity of 25% to be fermented and cultured under the conditions of 37° C. and 750 rpm, and fermented for 15 to 20 h, and dissolved oxygen and pH in the fermentation process were detected; and after the fermentation dissolved oxygen began to rise for 2.5 h, the fermentation was terminated, and the fermentation broth L-sorbose and fructose contents were detected. The fermentation results are shown in Table 1. Compared with the control strain G. oxydans CGMCC 1.110, the transformation rate of G. oxydans-11 was increased to 96.12%, the production intensity was increased by 14.7%, and the fructose by-product was decreased by 45.6%.









TABLE 2







Fermentation results of G. oxydans from which different


dehydrogenases are knocked out













Sorbose
Transformation
Fructose




content
rate
content








G. oxydans

265.8 g/L
91.65%
10.3 g/L 



CGMCC 1.110







G. oxydans-1

267.8 g/L
92.83%
9.2 g/L




G. oxydans-2

269.1 g/L
93.27%
8.6 g/L




G. oxydans-3

269.4 g/L
93.38%
8.2 g/L




G. oxydans-4

267.2 g/L
92.62%
9.6 g/L




G. oxydans-5

270.8 g/L
93.87%
7.5 g/L




G. oxydans-6

273.4 g/L
94.77%
6.7 g/L




G. oxydans-7

269.7 g/L
93.52%
9.1 g/L




G. oxydans-8

269.3 g/L
93.35%
9.4 g/L




G. oxydans-9

268.8 g/L
93.17%
8.3 g/L




G. oxydans-10

272.2 g/L
94.35%
6.9 g/L




G. oxydans-11

277.3 g/L
96.12%
5.6 g/L










Example 14: Disclosure of Gene Knockout in Improvement on Sorbose Transformation Rate in Other G. oxydans

The knockout method was applied to other G. oxydans according to the methods of Examples 1 and 2, which specifically includes: knocking out the PQQ-dependent DH3 gene of G. oxydans 621H; knocking out the gDH gene of G. oxydans CGMCC 1.049; and knocking out the Sdh-SLC gene of G. oxydans WSH-003. G. oxydans 621H was purchased from ATCC, and G. oxydans CGMCC 1.049 was purchased from CGMCC. G. oxydans WSH-003 was disclosed in the patent with the publication number of CN 104611285 B. The recombinant strain was fermented in the same manner as in Example 12.


The results are shown in Table 2. The method of the present disclosure may still improve the transformation efficiency of D-sorbitol to L-sorbose by G. oxydans to varying degrees, indicating that the method may be applied to most G. oxydans.









TABLE 3







Fermentation results of different G. oxydans from


which different dehydrogenases are knocked out











L-sorbose
Transformation
Fructose


Strains/(knockout genes)
yield
rate
content















G. oxydans 621H (PQQ-

Before knockout
260.7 g/L
90.37%
12.3 g/L


dependent DH3 (Genbank
After knockout
263.4 g/L
91.30%
 9.6 g/L


accession number: GOX1441))







G. oxydans CGMCC 1.049

Before knockout
258.7 g/L
89.67%
14.5 g/L


(gDH)
After knockout
262.8 g/L
91.09%
10.7 g/L



G. oxydans WSH-003 (sDH-

Before knockout
265.4 g/L
92.00%
11.3 g/L


SLC)
After knockout
268.7 g/L
93.14%
 8.9 g/L








Claims
  • 1. A method for improving yield and production intensity of L-sorbose, comprising knocking out genes related to formation of an L-sorbose metabolic by-product, wherein the genes related to formation of the L-sorbose metabolic byproduct comprise at least one of GDH, GA-5-DH, XDH2, ALDH, XDH, sDH SLC, PTS, PQQ-dependent DH3, NADH-DH, and NADH-dependent ADH genes; and the GDH contains a nucleotide sequence set forth in SEQ ID NO. 1; the GA-5-DH contains a nucleotide sequence set forth in SEQ ID NO. 2; the XDH2 contains a nucleotide sequence set forth in SEQ ID NO. 3; the ALDH contains a nucleotide sequence set forth in SEQ ID NO. 4; the XDH contains a nucleotide sequence set forth in SEQ ID NO. 5; the sDH SLC contains a nucleotide sequence set forth in SEQ ID NO. 6; the PTS contains a nucleotide sequence set forth in SEQ ID NO. 7; the PQQ-dependent DH3 contains a nucleotide sequence set forth in SEQ ID NO. 8; the NADH-DH contains a nucleotide sequence set forth in SEQ ID NO. 9; and the NADH-dependent ADH contains a nucleotide sequence set forth in SEQ ID NO. 10.
  • 2. The method according to claim 1, wherein the following genes are knocked out: (a) the GDH gene set forth in SEQ ID NO. 1;(b) the GA-5-DH gene set forth in SEQ ID NO. 2;(c) the XDH2 gene set forth in SEQ ID NO. 3;(d) the ALDH gene set forth in SEQ ID NO. 4;(e) the XDH gene set forth in SEQ ID NO. 5;(f) the sDH SLC gene set forth in SEQ ID NO. 6;(g) the PTS gene set forth in SEQ ID NO. 7;(h) the PQQ-dependent DH3 gene set forth in SEQ ID NO. 8;(i) the NADH-DH gene set forth in SEQ ID NO. 9;(j) the NADH-dependent ADH gene set forth in SEQ ID NO. 10; and(k) a combination of the genes of (a) to (j).
  • 3. The method according to claim 1, wherein the method is applied to Gluconobacter oxydans (G. oxydans).
  • 4. The method according to claim 2, wherein the method is applied to G. oxydans.
  • 5. The method according to claim 4, wherein the G. oxydans comprises G. oxydans CGMCC 1.110.
  • 6. A genetically engineered strain for producing L-sorbose, wherein genes related to formation of major metabolic byproducts generated by synthesis of sorbose in a metabolic pathway of L-sorbose produced are knocked out; the major metabolic byproducts comprise fructose; and the genes related to formation of the major metabolic byproducts comprise at least one of GDH, GA-5-DH, XDH2, ALDH, XDH, sDH SLC, PTS, PQQ-dependent DH3, NADH-DH, and NADH-dependent ADH genes.
  • 7. The genetically engineered strain according to claim 6, wherein the genes related to formation of L-sorbose metabolic by-products are knocked out; the genes related to formation of the metabolic byproducts comprise at least one of GDH, GA-5-DH, XDH2, ALDH, XDH, sDH SLC, PTS, PQQ-dependent DH3, NADH-DH, and NADH-dependent ADH genes; the GDH contains a nucleotide sequence set forth in SEQ ID NO. 1; the GA-5-DH contains a nucleotide sequence set forth in SEQ ID NO. 2; the XDH2 contains a nucleotide sequence set forth in SEQ ID NO. 3; the ALDH contains a nucleotide sequence set forth in SEQ ID NO. 4; the XDH contains a nucleotide sequence set forth in SEQ ID NO. 5; the sDH SLC contains a nucleotide sequence set forth in SEQ ID NO. 6; the PTS contains a nucleotide sequence set forth in SEQ ID NO. 7; the PQQ-dependent DH3 contains a nucleotide sequence set forth in SEQ ID NO. 8; the NADH-DH contains a nucleotide sequence set forth in SEQ ID NO. 9; and the NADH-dependent ADH contains a nucleotide sequence set forth in SEQ ID NO. 10.
  • 8. The genetically engineered strain according to claim 7, wherein the GDH gene set forth in SEQ ID NO. 1, the GA-5-DH gene set forth in SEQ ID NO. 2, the XDH2 gene set forth in SEQ ID NO. 3, the ALDH gene set forth in SEQ ID NO. 4, the XDH gene set forth in SEQ ID NO. 5, the sDH SLC gene set forth in SEQ ID NO. 6, the PTS gene set forth in SEQ ID NO. 7, the PQQ-dependent DH3 gene set forth in SEQ ID NO. 8, the NADH-DH gene set forth in SEQ ID NO. 9, and the NADH-dependent ADH gene set forth in SEQ ID NO. 10 are knocked out.
  • 9. The genetically engineered strain according to claim 8, wherein G. oxydans is used as a host.
  • 10. A method for constructing the genetically engineered strain according to claim 8, comprising: separately amplifying 800 to 1200 bp sequences of a target gene in the upstream and downstream of a genome, and fusing with a resistance gene and a negative selective marker gene to construct a knockout box: left homologous arm (HAL)-resistance gene-negative selective marker gene-right homologous arm (HAR); ligating the knockout box to a vector, and transforming into a competent cell of a host; carrying out first screening in a resistance marker-containing medium; and carrying out second screening in a negative selective marker analog-containing medium.
  • 11. The method according to claim 10, wherein the resistance gene is a gene encoding antibiotic resistance, the negative selective marker gene is an upp gene, and a negative selective marker analog is 5-fluorouracil.
  • 12. A method for producing L-sorbose, comprising: inoculating the genetically engineered strain according to claim 8 to a fermentation medium; and fermenting and culturing under conditions of 28 to 30° C. and 200 to 220 rpm.
  • 13. The method according to claim 12, wherein the fermentation medium contains 280 to 350 g of D-sorbitol, 0.4 to 0.6 g of yeast extract, 1.5 to 2.5 g of liquid corn syrup, and 0.5 to 1 g of light calcium carbonate per L.
  • 14. The method according to claim 12, further comprising carrying out seed culture of the genetically engineered strain, wherein a seed medium for seed culture contains 180 to 200 g of D-sorbitol, 6 to 8 g of yeast extract, and 2 to 4 g of calcium carbonate per L.
  • 15. The method according to claim 12, further comprising: inoculating the genetically engineered strain into a seed medium to be cultured for 36 to 48 h to obtain a first-stage seed, the first-stage seed having OD600 of 2 to 3; transferring the first-stage seed at an inoculation quantity of 1%, and culturing for 20 to 24 h to obtain a fermentation seed liquid, the fermentation seed liquid having OD600 of 2 to 3; and transferring the fermentation seed liquid to a fermentor at an inoculation quantity of 20 to 25%, and fermenting at a temperature of 35 to 37° C.
Priority Claims (1)
Number Date Country Kind
2019100894897 Jan 2019 CN national