METHOD FOR INCREASING CANNABIS YIELD VIA GENE EDITING

Information

  • Patent Application
  • 20220106604
  • Publication Number
    20220106604
  • Date Filed
    December 20, 2021
    3 years ago
  • Date Published
    April 07, 2022
    2 years ago
Abstract
The present invention discloses a method for increasing flower yield in Cannabis plants via genome editing approach. More particularly, the method comprises steps of: (a) selecting a gene involved in the flowering pathways of said Cannabis species; (b) synthesizing or designing a gRNA expression cassette corresponding to a targeted cleavage locus along the Cannabis genome; (c) transforming said Cannabis plant cells to insert genetic material into them; (d) culturing said Cannabis plant cells; (e) selecting said Cannabis cells which express desired mutations in the editing target region, and (f) regenerating a plant from said transformed plant cell, plant cell nucleus, or plant tissue.
Description
FIELD OF INVENTION

The present invention generally relates to the field of improving traits in plants. More particularly, the present invention relates to improving flower yield in Cannabis plants using the CRISPR/Cas genome editing approach.


BACKGROUND OF THE INVENTION

The Cannabis market is enjoying an unprecedented spike in activity following the wide spread legalization trend across the world. It is estimated that the American market alone would reach a value of at least $30B by 2025, with an exceptional growth rate of 30% per annum. This has led to an increase in demand not only for Cannabis products in general but in particular for products with very specific traits, be it medicinal or recreational use. That demand at times meets a lacking supply, for numerous varied reasons. To allow profitability, growers must leave the environmentally controlled indoor grow facility and go out to the greenhouse or field. Under greenhouse and field conditions, plant performance, for example in terms of growth, development, biomass accumulation and yield, depends on a plant's tolerance and acclimation ability to numerous environmental conditions, changes and stresses. Thus, this transition from the indoor to the outdoor poses several obstacles to growers, and a central such hurdle is achieving consistent high yield.


Numerous avenues have been put forward by inventors and scientists around the world in an attempt to improve Cannabis yield, including photoacoustic energy (US20180127327A1), light (intensity, wavelength, directionality; US20160184237A1, CA2958257C) or transgenic plants with specific traits transformed (U.S. Pat. No. 8,344,205B2).


However, the Cannabis cultivation community has only recently began adopting hard science and the gradual shift from traditional cultivation methods to modern, science-based techniques is still in its infancy. The most acute scientific deficiency in that regard is the lack of fully developed and robust genetics of Cannabis sativa, a shortcoming which hinders the availability and use of genetically enhanced seeds. Without a rapid adoption of genetic tools it is unlikely that Cannabis growers would be able to both meet demand as well as turn a profit, since commercial competition has significantly cut revenues per grower while traditional cultivation measures fail to increase yield in order to compensate for said losses. Further still, the unstable nature of the Cannabis product generated by traditional methods prevents users from enjoying a stable and consistent product, one that would fit particular needs of different consumers. However, big agro companies have yet to jump on the Cannabis wagon due to its still tremulous legal standing.


Since Cannabis cultivation has been illegal for many decades, and only recently has been partially legalized, it still predominantly relies on traditional horticultural techniques, methods, and traditions. These growing practices severely lack scientific rigor and are not suitable for the transition into large-scale Cannabis production. The most flagrant lacuna characterizing this lax scientific approach is the absence of genetic data and tools. Further still, scientists and inventors have so far focused their gaze on improving the production of cannabinoids (WO2018035450A1) rather than ameliorating the physiological parameters of the Cannabis sativa plant as a whole. As a caveat one must acknowledge the fact that attempts have been made in the transgenic front within the context of improving crop yield in general. However, considering the fact that Cannabis users are wearier than others about the GMO status of their product, the insertion of foreign DNA into the Cannabis plant in that fashion may deter a considerable portion of the potential market from such transgenic products. Furthermore, while the emphasis given to cannabinoids is predictable and understandable, neglecting the whole plant physiology is a major hindrance to the industry's ability to meet the growing market demand.


In light of the above, it is the aim of the present invention to provide a novel method of effectively and consistently increasing yield of a transgene-free Cannabis plant. The method is based on gene editing of the Cannabis plant genome at a specific nucleic acid sequence, which results in a set of desired traits which ameliorate the flowering process.


The challenge here is to efficiently induce precise and predictable targeted point mutations pivotal to the flowering process in the cannabis plant using the CRISPR/Cas9 system.


A significant added value of gene editing is that it does not qualify as genetic modification so the resultant transgene-free plant will therefore be not considered a GMO plant/product, at the least in the USA. While the exact and operational definition of genetically modified is hotly debated and contested, it is generally agreed upon and accepted that genetic modification refers to plants and animals that have been altered in a way that wouldn't have arisen naturally through evolution. The clearest and most obvious example is a transgenic organism whose genome now incorporates a gene from another species inserted to bestow a novel trait to that organism, such as pest resistance. The situation is different with CRISPR, as it is not necessarily integrated into the plant genome, and is used as a gene editing tool which allows to directly mutate the organism's genetic code. There is therefore a long felt unmet need to provide Cannabis strains with increased yields.


SUMMARY OF THE INVENTION

It is therefore one object of the present invention to disclose a method for increasing yield in Cannabis plants selected from the group consisting of C. sativa, C. indica, and C. ruderalis, comprising steps of;

    • a) selecting a gene involved in the flowering pathways of said Cannabis species;
    • b) synthesizing or designing a gRNA (guide RNA) expression cassette corresponding to a targeted cleavage locus along the Cannabis genome;
    • c) transforming said Cannabis plant cells to insert genetic material into them;
    • d) culturing said Cannabis plant cells;
    • e) selecting said Cannabis cells which express desired mutations in the editing target region, and
    • f) regenerating a plant from said transformed plant cell, plant cell nucleus, or plant tissue.


It is a further object of the present invention to disclose the method as defined above, wherein the gene involved in the flowering pathways of said Cannabis species is selected from the group consisting of CsSFT1, CsSFT2, CsSFT3, CsSPGB, CsMultiflora, CsJumonji, CsBif1 and CsBif2; and detailed in the file titled “3309_1_3_SEQ_LISTING”. It is a further object of the present invention to disclose the method as defined above, wherein the gRNAs and their corresponding protospacer adjacent motif (PAMs) are selected from a group consisting of CsSFT1, CsSFT2, CsSFT3, CsSPGB, CsMultiflora, CsJumonji, CsBif1 and CsBif2 and detailed in the file titled “3309_1_3_SEQ_LISTING”. It is a further object of the present invention to disclose the method as defined above, wherein the target domain sequence is selected from the group comprising of: 1) a nucleic acid sequence encoding the polypeptide of CsSFT1 (2) a nucleic acid sequence comprising the sequence of CsSFT2, (3) a nucleic acid sequence encoding the polypeptide of CsSFT3,


(4) a nucleic acid sequence encoding the polypeptide of CsSPGB (5) a nucleic acid sequence encoding the polypeptide of CsMultiflora (6) a nucleic acid sequence encoding the polypeptide of CsJumonji (7) a nucleic acid sequence encoding the polypeptide of CsBif1 (8) a nucleic acid sequence encoding the polypeptide of CsBif2, (9) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of CsSFT1, (10) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of CsSFT2, (11) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of CsSFT3, (12) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of CsSPGB, (13) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of CsMultiflora, (14) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of CsJumonji, (15) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of CsBif1 (16) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of CsBif2.


It is a further object of the present invention to disclose the method as defined above, wherein the transformation is carried out using Agrobacterium to deliver an expression cassette comprised of a) a selection marker, b) a nucleotide sequence encoding one or more gRNA molecules comprising a DNA sequence which is complementary with a target domain sequence selected from the group pf genes comprised of CsSFT1, CsSFT2, CsSFT3, CsSPGB, CsMultiflora, CsJumonji, CsBif1 and CsBif2, and c) a nucleotide sequence encoding a Cas molecule from, but not limited to Streptococcus pyogenes or Staphylococcus aureus.


It is a further object of the present invention to disclose the method as defined above, wherein the method comprises administering a nucleic acid composition that comprises: a) a first nucleotide sequence encoding the gRNA molecule and b) a second nucleotide sequence encoding the Cas molecule.


It is a further object of the present invention to disclose the method as defined above, wherein the CRISPR/Cas system is delivered to the cell by a plant virus. It is a further object of the present invention to disclose the method as defined above, wherein the Cas protein is selected from a group comprising but not limited to Cpf1, Cas9, Cas12, Cas13, Cas14, CasX or CasY.


It is a further object of the present invention to disclose the method as defined above, wherein increasing Cannabis yield comprising steps of:

    • (a) introducing into a Cannabis plant or a cell thereof (i) at least one RNA-guided endonuclease comprising at least one nuclear localization signal or nucleic acid encoding at least one RNA-guided endonuclease comprising at least one nuclear localization signal, (ii) at least one guide RNA or DNA encoding at least one guide RNA, and, optionally, (iii) at least one donor polynucleotide; and
    • (b) culturing the Cannabis plant or cell thereof such that each guide RNA directs an RNA-guided endonuclease to a targeted site in the chromosomal sequence where the RNA-guided endonuclease introduces a double-stranded break in the targeted site, and the double-stranded break is repaired by a DNA repair process such that the chromosomal sequence is modified, wherein the targeted site is located in the CsSFT1, CsSFT2, CsSFT3, CsSPGB, CsMultiflora, CsJumonji, CsBif1 and CsBif2 genes and the chromosomal modification interrupts or interferes with transcription and/or translation of the CsSFT1, CsSFT2, CsSFT3, CsSPGB, CsMultiflora, CsJumonji, CsBif1 and CsBif2genes.


It is a further object of the present invention to disclose the method as defined above, wherein the RNA-guided endonuclease is derived from a clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system. It is a further object of the present invention to disclose the method as defined above, wherein the introduction of CsSFT1, CsSFT2, CsSFT3, CsSPGB, CsMultiflora, CsJumonji, CsBif1 and CsBif2 does not insert exogenous genetic material and produces a non-naturally occurring Cannabis plant or cell thereof.


It is a further object of the present invention to disclose the method as defined above, wherein increasing Cannabis yield comprises;

    • (a) identifying at least one locus within a DNA sequence in a Cannabis plant or a cell thereof for CsSFT1, CsSFT2, CsSFT3, CsSPGB, CsMultiflora, CsJumonji, CsBif1 and CsBif2;
    • (b) identifying at least one custom endonuclease recognition sequence within the at least one locus of CsSFT1, CsSFT2, CsSFT3, CsSPGB, CsMultiflora, CsJumonji, CsBif1 or CsBif2;
    • (c) introducing into the Cannabis plant or a cell thereof at least a first custom endonuclease, wherein the Cannabis plant or a cell thereof comprises the recognition sequence for the custom endonuclease in or proximal to the loci of CsSFT1, CsSFT2, CsSFT3, CsSPGB, CsMultiflora, CsJumonji, CsBif1 or CsBif2, and the custom endonuclease is expressed transiently or stably;
    • (d) assaying the Cannabis plant or a cell thereof for a custom endonuclease-mediated modification in the DNA making up or flanking the loci of CsSFT1, CsSFT2, CsSFT3, CsSPGB, CsMultiflora, CsJumonji, CsBif1 or CsBif2
    • (e) identifying the Cannabis plant, a cell thereof, or a progeny cell thereof as comprising a modification in the loci of CsSFT1, CsSFT2, CsSFT3, CsSPGB, CsMultiflora, CsJumonji, CsBif1 or CsBif2.


It is a further object of the present invention to disclose the method as defined above, wherein increasing said Cannabis yield is selected from a group consisting of: increasing the number of flowers, increasing the size of the flowers, increasing the weight of the flowers, increasing the number of buds, increasing the size of the buds, increasing the weight of the buds and any combination thereof.


It is a further object of the present invention to disclose a method for increasing yield in Cannabis plants selected from a group consisting of C. sativa, C. indica, and C. ruderalis, comprising steps of;

    • a) selecting a gene involved in the flowering pathways of said Cannabis species;
    • b) extracting cells of said Cannabis plants;
    • c) editing said genes involved in the flowering pathways of said cells;
    • d) culturing said cells;
    • e) selecting said cells expressing desired mutations in the editing target region, and
    • f) regenerating a Cannabis plant from said cell, plant cell nucleus, or plant tissue.


It is a further object of the present invention to disclose the method as defined above, wherein the editing is executed by means selected from a group consisting of: CRISPR/Cas, cleaving the genome of said cell using zinc finger nucleases, cleaving the genome of said cell using meganucleases (homing endonucleases), cleaving the genome of said cell using transcription activator-like effector nucleases (TALEN), and any combination thereof.


It is therefore another object of the present invention to disclose a Cannabis plant produced by the method described above;


It is therefore another object of the present invention to disclose a Cannabis seed of the plant of described above.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.



FIG. 1 is a depiction of the transformation process of various Cannabis tissues using the GUS reporter gene;



FIG. 2 is a depiction of transformed leaf tissue screened by PCR for the presence of the Cas9 two weeks post transformation; and



FIG. 3 is a depiction of In vivo specific DNA cleavage by Cas9+gRNA (Ribonucleoprotein protein complex, RNP).





BRIEF DESCRIPTION OF THE DESCRIBED SEQUENCES

The nucleic and/or amino acid sequences provided herewith are shown using standard letter abbreviations for nucleotide bases, and three letter code for amino acids, as defined in 37 C.F.R. 1.822. Only one strand of each nucleic acid sequence is shown, but the complementary strand is understood as included by any reference to the displayed strand. The Sequence Listing is submitted as an ASCII text file named 3309_1_3_SEQ_LISTING.txt, created Dec. 19, 2021, about 299 KB, which is incorporated by reference herein.


DETAILED DESCRIPTION OF THE INVENTION

The following description is provided, so as to enable any person skilled in the art to make use of the invention and sets forth the best modes contemplated by the inventor of carrying out this invention. Various modifications, however, are adapted to remain apparent to those skilled in the art, since the generic principles of the present invention have been defined specifically to provide a method for increasing flower yield in Cannabis plants.


Introduction to Terms and Explanations Used in the Disclosure of the Present Invention:


The present invention disclosed herein provides a method for producing a plant with increased yield as compared to a corresponding wild type plant comprising increasing or generating one or more activities in a plant or a part thereof. The present invention provides plant cells with enhanced or improved traits of a gene-edited plant, plants comprising such cells, progeny, seed and pollen derived from such plants, and methods of making and methods of using such plant cell(s) or plant(s), progeny, seed(s) or pollen. Particularly, said improved trait(s) are manifested in an increased yield, preferably by improving one or more yield-related trait(s) number of flowers per plant, number of flowering buds per plant, flower weight, total flower yield per m2.


Heterosis and Crop Yield


Heterosis (aka hybrid vigor or outbreeding enhancement) defines the enhanced function (or vigor) of a biological trait in a hybrid offspring. An offspring is heterotic if its traits are enhanced as a result of mixing (Mendelian or not) the genetic contributions of its parents. In crop breeding, this kind of outbreeding has come to generally mean a higher-yielding and a more robust plant under cultivation conditions (but not necessarily in the wild), Two non-mutually exclusive yet competing hypotheses have been proposed to account for this tendency of outbred strains to exceed both inbred parents in fitness. According to the dominance hypothesis, the enhanced vigor stems from the suppression of undesirable recessive alleles from one parent by dominant alleles from the other. Dominance assumes complementation, i.e. that crossing two strains of a plant, carrying different homozygous recessive mutations that produce the same mutant phenotype, will produce offspring with the wild-type phenotype. This will occur only if the mutations are in different genes such that strain's genome complements the mutated allele of one strain with a wild type allele of the other (since the mutations are recessive).


According to the overdominance hypothesis, certain combinations of alleles that can be obtained by crossing two inbred strains are advantageous in the heterozygote. Thus, a heterozygote provides an advantage to the survival of deleterious alleles in homozygotes and the high fitness of heterozygous genotypes favors the persistence of an allelic polymorphism in the population. The overdominance model states that intralocus allelic interactions at one or more heterozygous genes lead to increased vigor. Theoretically, overdominance requires only a single heterozygous gene to achieve heterosis.


Under dominance, few genes should be under-expressed in the heterozygous offspring compared to the parents. Furthermore, for any given gene, the expression should be comparable to the one observed in the fitter of the two parents. However, under overdominance, there should be an over-expression of certain genes in the heterozygous offspring compared to the homozygous parents.


Krieger et al. (2010) were first to document an example of overdominance at a locus for yield and suggest that single heterozygous mutations may indeed improve crop productivity. The authors report a robust heterozygosity, under various environmental conditions, for the tomato SFT (single flower truss) gene (the genetic originator of the flowering hormone florigen), increased yield by ˜60%. Florigen is a systemic signal for the transition to flowering in plants. Florigen is produced in the leaves, and acts in the shoot apical meristem of buds and growing tips. It is graft-transmissible, and even functions between species. The florigen cascade pathway is initiated by the production of a mRNA coding transcription factor CONSTANS (CO). CO mRNA is produced approximately 12 hours after dawn and then translated into CO protein. CO protein is stable only in light and promotes transcription of another gene called Flowering Locus T (FT). Thus, FT can be produced only on long days. FT is then transported via the phloem to the shoot apical meristem. There, FT interacts with a transcription factor (FD protein) to activate floral identity genes and induce flowering. The authors concluded that several traits integrate pleiotropically to drive heterosis in a multiplicative manner, and that these effects derive from a suppression of growth termination mediated by the SP (self-pruning) gene, an antagonist of SFT.


Self-pruning (SP) genes are Florigen paralog and flowering repressors that control the regularity of the vegetative-reproductive switch during sympodial growth along the compound shoot of tomato and thus conditions the ‘determinate’ (sp/sp) and ‘indeterminate’ (SP) growth habits of the plant. In wild-type ‘indeterminate’ plants, inflorescences are separated by three vegetative nodes. In ‘determinate’ plants homozygous for the recessive allele of the Self-pruning (SP) gene, by two consecutive inflorescences. SP is a development regulator homologous to the Flowering locus T (FT) gene in Arabidopsis. SP is a gene family in tomato composed of at least six genes. The G-box (CACGTG) is a ubiquitous, cis-acting DNA regulatory element found in plant genomes. G-box factors (GBFs) bind to G-boxes in a context-specific manner, mediating a wide variety of gene expression patterns. SPGB (Self-pruning G-box) has been shown to interact with the tomato SP protein and the SFT protein.


Jumonji-C (JmjC) proteins play important roles in plant growth and development, particularly in regulating circadian clock and period length. The first plant JmjC genes characterized were involved in the flowering cascade, either as floral activators or repressors.


Bifurcate flower truss (bif) is a mutant tomato gene which leads to a significant increase in the number of branches per truss and flower number. Bif shows a significant interaction with exposure to low temperature during truss development.


Gene Editing


Mutation breeding refers to a host of techniques designed to rapidly and effectively induce desired or remove unwanted traits via artificial mutations in a target organism. Gene editing is such a mutation breeding tool which offers significant advantages over genetic modification. Genetic modification is a molecular technology involving inserting a DNA sequence of interest, coding for a desirable trait, into an organism's genome. Gene editing is a mutation breeding tool which allows precise modification of the genome. It works when molecular scissors (a protein complex from the Cas family) are precisely directed toward an exact genome locus using a guide RNA, and then incise the genome at that site.


One advantage to using the CRISPR/Cas system over genetic modification is that Cas family proteins are easily programmed to make a DNA double strand break (DSB) in any desirable locus. The initial cut is followed by repairing chromosomal DSBs. There are two major cellular repair pathways in that respect: Non-homologous end joining (NHEJ) and Homology directed repair (HDR). This invention concerns itself with NHEJ which is active throughout the cell cycle and has a higher capacity for repair, as there is no requirement for a repair template (sister chromatid or homologue) or extensive DNA synthesis. NHEJ also finishes repair of most types of breaks in tens of minutes—an order of magnitude faster than HDR. NHEJ-mediated repair of DSBs is useful if the intent is to make a null allele (knockout) in a gene of interest, as it is prone to generating indel errors. Indel errors generated in the course of repair by NHEJ are typically small (1-10 bp) but extremely heterogeneous. There is consequently about a two-thirds chance of causing a frameshift mutation. Of some importance, the deletion can be less heterogeneous when constrained by sequence identities in flanking sequence (microhomologies).


Additionally, there is no foreign DNA left over in the plant after selection for plants which contain the desired editing event and do not carry the CRISPR/Cas machinery. This significant advantage has allowed gene editing to be viewed by many (though not all) legal systems around the world as GMO-free.


Significant advances have been made recently in an attempt to more efficiently target and cleave genomic DNA by site specific nucleases [e.g. zinc finger nucleases (ZFNs), meganucleases, transcription activator-like effector nucleases (TALENS)]. More recently, RNA-guided endonucleases (RGENs) have been introduced, and they are directed to their target sites by a complementary RNA molecule. These systems have a DNA-binding domain that localizes the nuclease to a target site. The site is then cut by the nuclease. These systems are used to induce targeted mutagenesis, induce targeted deletions of cellular DNA sequences, and facilitate targeted recombination of an exogenous donor DNA polynucleotide within a predetermined genomic locus. Most notable and successful of RGENs is Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated nuclease (CRISPR/Cas) with an engineered crRNA/tracr RNA. CRISPR/Cas9 are cognates that find each other on the target DNA.


The CRISPR-Cas9 system has rapidly become a tool of choice in gene editing because it is faster, cheaper, more accurate, and more efficient than other available RGENs. This system was adapted from a naturally occurring genome editing system in bacteria designed to produce viral resistance such that bacteria capture snippets of DNA from invading viruses and use them to create DNA segments known as CRISPR arrays. The CRISPR arrays allow the bacteria to “remember” the viruses (or closely related ones). If the viruses attack again, the bacteria produce RNA segments from the CRISPR arrays to target the viruses' DNA. The bacteria then use Cas9 or a similar enzyme to cut the DNA, which disables the virus. In lab conditions, scientists create a small piece of RNA with a short “guide” sequence (gRNA) that binds to a specific target sequence of DNA in a genome. The RNA also binds to the Cas9 enzyme. As in bacteria, the modified RNA is used to recognize the DNA sequence, and the Cas9 enzyme cuts the DNA at the targeted location. Although Cas9 is the enzyme that is used most often, other enzymes (for example Cpf1) can also be used. Once the DNA is cut, the cell's own DNA repair machinery add or delete pieces of genetic material resulting in mutation.


Ribonucleoprotein Protein Complex (RNP)


Ribonucleoprotein protein complex is formed when a Cas protein is incubated with gRNA molecules and then transformed into cells in order to induce editing events in the cell. RNP's can be delivered using biolistics.


Biolistics


Biolistics is a method for the delivery of nucleic acid and or proteins to cells by high-speed particle bombardment. The technique uses a pressurized gun (gene gun) to forcibly propel a payload comprised of an elemental particle of a heavy metal coated with plasmid DNA to transform plant cellular organelles. After the DNA-carrying vector has been delivered, the DNA is used as a template for transcription and sometimes it integrates into a plant chromosome (“stable” transformation). If the vector also delivered a selectable marker, then stably transformed cells can be selected and cultured. Transformed plants can become totipotent and even display novel and heritable phenotypes.


The skeletal biolistic vector design includes not only the desired gene to be inserted into the cell, but also promoter and terminator sequences as well as a reporter gene used to enable the ensuing detection and removal cells which failed to incorporate the exogenous DNA. In addition to DNA, the use of a Cas9 protein and a gRNA molecule could be used for biolistic delivery. The advantage of using a protein and a


RNA molecule is that the complex initiates editing upon reaching the cell nucleus: when using DNA for editing the DNA first has to be transcribed in the nucleus but when using RNA for editing, RNA is translated already in the cytoplasm. This forces the Cas protein to shuttle back to the nucleus, find the relevant guides and only then can editing be achieved.


As used herein, the term “CRISPR” refers to an acronym that means Clustered Regularly Interspaced Short Palindromic Repeats of DNA sequences. CRISPR is a series of repeated DNA sequences with unique DNA sequences in between the repeats. RNA transcribed from the unique strands of DNA serves as guides for directing cleaving. CRISPR is used as a gene editing tool. In one embodiment, CRISPR is used in conjunction with (but not limited to) Cpf1, Cas9, Cas12, Cas13, Cas14, CasX or CasY.


As used herein, the term “transformation” refers to the deliberate insertion of genetic material into plant cells. In one embodiment transformation is executed using, but not limited to, bacteria and/or viruses. In another embodiment, transformation is executed via biolistics using, but not limited to, DNA or RNPs.


As used herein, the term “Cas” refers to CRISPR associated proteins that act as enzymes cutting the genome at specific sequences. Cas9 refers to a specific group of proteins known in the art. RNA molecules direct various classes of Cas enzymes to cut a certain sequence found in the genome. In one embodiment, the CRISPR/Cas9 system cleaves one or two chromosomal strands at known DNA sequence. In one embodiment, one of the two chromosomal strands is mutated. In one embodiment, two of the two chromosomal strands are mutated.


As used herein, the term “chromosomal strand” refers to a sequence of DNA within the chromosome. When the CRISPR/Cas9 system cleaves the chromosomal strands, the strands are cut leaving the possibility of one or two strands being mutated, either the template strand or coding strand.


As used herein, the term “PAM” (protospacer adjacent motif) refers to a targeting component of the transformation expression cassette which is a very short (2-6 base pair) DNA sequence immediately following the DNA sequence targeted by the Cas9 nuclease in the CRISPR system.


Within the context of this disclosure, other examples of endonuclease enzymes include, but are not limited to, Cpf1, Cas9, Cas12, Cas13, Cas14, CasX or CasY.


The invention is characterized by a plurality of embodiments in which gRNAs direct the CRISPR/Cas system to cleave chromosomal strands coding for various genes (CsBif1, CsBif2, CsJumonji, CsMultiflora, CsSFT1, CsSFT2, CsSFT3 and CsSPGB). The full genomic sequences of these various genes are all documented in the seq.listing file, listed as SEQ ID NOs: SEQ ID NO:1, SEQ ID NO:171, SEQ ID NO:390, SEQ ID NO:726, SEQ ID NO:936, SEQ ID NO:1015, SEQ ID NO:1106 and SEQ ID NO:1335.


In another embodiment of the present invention, the coding sequences (CDS) of the above genes are all documented in the seq.listing file, listed as SEQ ID NOs: SEQ ID NO:2, SEQ ID NO:172, SEQ ID NO:391, SEQ ID NO:727, SEQ ID NO:937, SEQ ID NO:1016, SEQ ID NO:1107 and SEQ ID NO:1336.


In yet another embodiment of the present invention, the amino acids (AA) sequences of the proteins translated from the above genes are all documented in the seq.listing file, listed as SEQ ID NOs: SEQ ID NO:3, SEQ ID NO:173, SEQ ID NO:392, SEQ ID NO:728, SEQ ID NO:938, SEQ ID NO:1017, SEQ ID NO:1108 and SEQ ID NO:1337.


The invention is further characterized by a plurality of embodiments in which gRNAs of a given sequence are paired with a specific complementary PAMs. These gRNAs are all documented in full in Tables 1-8, and in the seq.listing file listed as SEQ ID Nos: SEQ ID NOs:4-170 (for CsBif1), SEQ ID NOs:174-389 (for CsBif2), SEQ ID NOs:393-725 (for CsJumonji), SEQ ID NOs: 729-935 (for CsMultiflora), SEQ ID NOs: 939-1014 (for CsSFT1), SEQ ID NOs: 1018-1105 (for CsSFT2), SEQ ID NOs: 1109-1334 (for CsSFT3) and SEQ ID NOs: 1338-1500 (for Cs SPGB).


Example 1: A generalized scheme of the process for generating genome edited plants Reference is now made to FIGS. 1-3 disclosing the process of generating genome edited Cannabis plants. Various Cannabis sativa tissues ([A] Auxiliary buds; [B] Mature leaf; [C] Calli; [D] Cotyledons, as depicted in FIG. 1) were transformed using the GUS (β-glucuronidase) reporter gene. In order to achieve a successful transformation, the following protocol was used:

    • 1. Design and synthesize gRNA's corresponding to a sequence targeted for editing. Editing event should be designed flanking a unique restriction site sequence to allow easier screening of successful editing.
    • 2. Transformation using Agrobacterium or biolistics. For Agrobacterium and bioloistics using a DNA plasmid, construct a vector containing a selection marker, Cas9 gene and relevant gRNAs. For biolistics using Ribonucleoprotein (RNP) complexes, create RNP complexes by mixing the Cas9 protein with relevant gRNAs.
    • 3. Regeneration in tissue culture. When transforming DNA, use antibiotics for selection of positive transformants.
    • 4. Selection of positive transformants. Once regenerated plants appear in tissue culture, sample leaf, extract DNA and preform PCR using primers flanking the editing region. Digest PCR products with enzymes recognizing the restriction site near original gRNA sequence. If editing event occurred, the restriction site will be disrupted and PCR product will not be cleaved. No editing event will result in a cleaved PCR product.



FIG. 2 depicts the transformed leaf tissue screened for the presence of the Cas9 gene two weeks post transformation. PCR products of the Cas9 gene that were amplified from four transformed plants two weeks post transformation.



FIG. 3 depicts In vivo specific DNA cleavage by Cas9+gRNA (RNP). Fig represents a gel showing successful digestion of the resulted PCR amplicon containing a specific gRNA sequence, by a ribonucleoprotein (RNP) complex containing Cas9. The analysis included the following steps:

    • 1) Amplicon was isolated from two exemplified Cannabis strains by primers flanking the sequence of the gene of interest targeted by the predesigned sgRNA.
    • 2) RNP complex was incubated with the isolated amplicon.
    • 3) The reaction mix was then loaded on agarose gel to evaluate Cas9 cleavage activity at the target site.


Legend to FIG. 3: (1) Sample 1 PCR (no DNA digest) product; (2) Sample 1 PCR product


+RNP (digested DNA); (3) Sample 2 PCR (no DNA digest) product; (4): Sample 2 PCR product+RNP (digested DNA); (M) marker.


Example 2: gRNA Sequences for Cannabis sativa Genes Disclosed in the Current Application

Reference is now made to the following tables presenting non-binding examples of gRNA sequences of the Cannabis sativa genes disclosed in this application, and their respective position, strand and PAM (protospacer adjacent motif).









TABLE 1







gRNA (guide RNA) sequences and complementing PAMs


(protospacer adjacent motif) of CsBif1 (referred


 to as SEQ ID NOs: 4-170 in the seq.listing


file).











Seq#
Position
Strand
Sequence
PAM





  4
  14
-1
CACATTACATAATAAAATTA
AGG





  5
  89
 1
ATGTCTTATATAAAGACTTC
AGG





  6
 161
-1
TTTTTGTGATAAAACTCTTC
TGG





  7
 202
-1
TATATATATTTTTCAATTGA
GGG





  8
 203
-1
TTATATATATTTTTCAATTG
AGG





  9
 269
 1
TTAGAAAATAAAAAAATTTA
AGG





 10
 380
-1
ATTTTATGTATTTTTATGTA
TGG





 11
 451
 1
GATATTACATCTACAAATAG
TGG





 12
 477
 1
GATCAGATCAACGATTAGTA
AGG





 13
 499
 1
GCGTTGACTATCCTTATCAC
AGG





 14
 499
-1
TTTTTCTTTGACCTGTGATA
AGG





 15
 526
-1
GAAGAAGAAAGAAGAATTAT
AGG





 16
 577
-1
TAGTGTTTTGATTCATTAGG
TGG





 17
 580
-1
TAGTAGTGTTTTGATTCATT
AGG





 18
 599
 1
ATCAAAACACTACTACAACA
AGG





 19
 684
 1
TAAAAAGAGACTCGCATGAG
TGG





 20
 718
-1
TTTGCTTATTATAAGGAGGA
GGG





 21
 719
-1
CTTTGCTTATTATAAGGAGG
AGG





 22
 722
-1
TTCCTTTGCTTATTATAAGG
AGG





 23
 725
-1
CATTTCCTTTGCTTATTATA
AGG





 24
 731
 1
CTCCTCCTTATAATAAGCAA
AGG





 25
 737
 1
CTTATAATAAGCAAAGGAAA
TGG





 26
 777
 1
TATTATTATTAAGCATACTG
AGG





 27
 799
 1
GATTGAGTGCTATAGCCTCC
TGG





 28
 803
-1
GAAAGATATGATCTACCAGG
AGG





 29
 806
-1
AATGAAAGATATGATCTACC
AGG





 30
 834
 1
TTCATTTGTTCTTCTGTCAA
AGG





 31
 861
 1
TGTTCGAATTCGAAAGAGAA
AGG





 32
 876
 1
GAGAAAGGATTTGAGCACAC
TGG





 33
 895
 1
CTGGTTCATCAGCAACATCA
TGG





 34
 911
 1
ATCATGGAGTCTTGTCAAAT
AGG





 35
 912
 1
TCATGGAGTCTTGTCAAATA
GGG





 36
 963
-1
TCAGTGCCTAACTAACTTGG
GGG





 37
 964
-1
ATCAGTGCCTAACTAACTTG
GGG





 38
 965
-1
TATCAGTGCCTAACTAACTT
GGG





 39
 966
-1
ATATCAGTGCCTAACTAACT
TGG





 40
 968
 1
AAAGTTCCCCCAAGTTAGTT
AGG





 41
 989
 1
GGCACTGATATCTGAATCAA
AGG





 42
1005
 1
TCAAAGGAGAATGCAAAGAC
AGG





 43
1072
-1
GATCCAAATAGAAGAATTAC
TGG





 44
1080
 1
TTACCAGTAATTCTTCTATT
TGG





 45
1108
 1
ATGTCAACATTTTCTCAATG
AGG





 46
1115
 1
CATTTTCTCAATGAGGTCTA
TGG





 47
1122
 1
TCAATGAGGTCTATGGCCAG
TGG





 48
1127
-1
TTTCCCACATGTTCATCCAC
TGG





 49
1134
 1
ATGGCCAGTGGATGAACATG
TGG





 50
1135
 1
TGGCCAGTGGATGAACATGT
GGG





 51
1151
-1
CCCTCGCCAACAGTTAGGCA
GGG





 52
1152
-1
TCCCTCGCCAACAGTTAGGC
AGG





 53
1156
 1
GGAAAGCCCTGCCTAACTGT
TGG





 54
1156
-1
TCGTTCCCTCGCCAACAGTT
AGG





 55
1161
 1
GCCCTGCCTAACTGTTGGCG
AGG





 56
1162
 1
CCCTGCCTAACTGTTGGCGA
GGG





 57
1170
 1
AACTGTTGGCGAGGGAACGA
AGG





 58
1171
 1
ACTGTTGGCGAGGGAACGAA
GGG





 59
1188
-1
AAGATGCTAAAAGATACATA
CGG





 60
1225
-1
ACACCAACAGAGTCAGATCT
CGG





 61
1233
 1
AAACCGAGATCTGACTCTGT
TGG





 62
1249
-1
TTCTGTGTTTCTTAGCTGCT
AGG





 63
1318
 1
ATAACACGCAAGAACTTAGA
TGG





 64
1334
 1
TAGATGGTAAAAATAAACAA
AGG





 65
1352
 1
AAAGGAAAGCTGTATCTAAT
TGG





 66
1353
 1
AAGGAAAGCTGTATCTAATT
GGG





 67
1373
-1
TAAAAGAACTTTTGGAACTG
TGG





 68
1381
-1
TTTAATGCTAAAAGAACTTT
TGG





 69
1406
 1
AGCATTAAATGAAGAAAAAT
TGG





 70
1415
 1
TGAAGAAAAATTGGCAAAGA
TGG





 71
1421
 1
AAAATTGGCAAAGATGGAAA
AGG





 72
1441
 1
AGGTCTCAATAGTTGAAATT
TGG





 73
1510
-1
TGCGCTTATTGACAGAGGTA
AGG





 74
1515
-1
TCAGATGCGCTTATTGACAG
AGG





 75
1546
 1
TGATGAACATGATCTTTGCC
TGG





 76
1553
-1
AATAGGAAGCCTTTGTTTCC
AGG





 77
1555
 1
TGATCTTTGCCTGGAAACAA
AGG





 78
1570
-1
TCTTTATGGAGCTTATGAAT
AGG





 79
1584
-1
GTCTGTTGGTTGCATCTTTA
TGG





 80
1598
-1
TCAATAGATGTGTGGTCTGT
TGG





 81
1606
-1
ATACTGCTTCAATAGATGTG
TGG





 82
1645
 1
GAAGAGTTCAACAACAACTC
AGG





 83
1659
-1
TGTTGTCACCAGATGGTACA
GGG





 84
1660
-1
ATGTTGTCACCAGATGGTAC
AGG





 85
1662
 1
CTCAGGAGCCCTGTACCATC
TGG





 86
1666
-1
CTGAGTATGTTGTCACCAGA
TGG





 87
1698
 1
AGTCATATACTCATTTTCCG
CGG





 88
1701
 1
CATATACTCATTTTCCGCGG
TGG





 89
1702
 1
ATATACTCATTTTCCGCGGT
GGG





 90
1704
-1
TGGTCTTGCTCGTCCCACCG
CGG





 91
1724
-1
GATCTTAAAATATGTGATTT
TGG





 92
1757
 1
CACAATTCGCATTAAGCAAA
AGG





 93
1764
 1
CGCATTAAGCAAAAGGTTGC
TGG





 94
1765
 1
GCATTAAGCAAAAGGTTGCT
GGG





 95
1785
-1
TTCTGCTAATGTTATACACA
GGG





 96
1786
-1
ATTCTGCTAATGTTATACAC
AGG





 97
1822
-1
TCTTGTACCAGATTCTTCGA
GGG





 98
1823
-1
TTCTTGTACCAGATTCTTCG
AGG





 99
1826
 1
ACTTCAACCCTCGAAGAATC
TGG





100
1890
-1
AACTTAATTCTAGCTTTTCA
AGG





101
1903
 1
TTGAAAAGCTAGAATTAAGT
TGG





102
1915
-1
GTCTTTGTTTATTGACTTCA
TGG





103
1949
-1
TTTATCAGAGGAGCATTGTC
AGG





104
1961
-1
TTCAAATCAAGGTTTATCAG
AGG





105
1972
-1
CAAATTATTCGTTCAAATCA
AGG





106
1984
 1
CTTGATTTGAACGAATAATT
TGG





107
2009
-1
CTACATTGCTACTGAGCTCA
TGG





108
2046
 1
TCAGTAAATTCTCGCCGCAA
AGG





109
2049
 1
GTAAATTCTCGCCGCAAAGG
TGG





110
2049
-1
ATGTGATTCCACCACCTTTG
CGG





111
2052
 1
AATTCTCGCCGCAAAGGTGG
TGG





112
2072
-1
ACTACAGATTGTAGCTATAA
GGG





113
2073
-1
TACTACAGATTGTAGCTATA
AGG





114
2111
-1
TTTTGTTGATTATATATAAA
TGG





115
2139
-1
TATAGGGTACATAAAAGTCA
AGG





116
2155
-1
TATCTATTCTATACAATATA
GGG





117
2156
-1
ATATCTATTCTATACAATAT
AGG





118
2180
-1
ATGTTTTCTTTTTCATTAAT
TGG





119
2246
-1
GTACAAAATGAATTTATAAA
TGG





120
2275
 1
TGTACAGAGTCAATGTAAAT
TGG





121
2293
-1
ATTGATGATTTGGGTAAATT
AGG





122
2302
-1
GTATTTTTAATTGATGATTT
GGG





123
2303
-1
AGTATTTTTAATTGATGATT
TGG





124
2347
-1
TGTGCCTAATTTTCTGTTTT
TGG





125
2354
 1
ATCACCAAAAACAGAAAATT
AGG





126
2440
-1
GATTAAGCTTCTTCGTCATT
TGG





127
2464
-1
GGATGCCAAACGCACGCTTC
GGG





128
2465
-1
TGGATGCCAAACGCACGCTT
CGG





129
2470
 1
AATCTCCCGAAGCGTGCGTT
TGG





130
2485
-1
TAACGCCTTTGATAATCATA
TGG





131
2491
 1
GGCATCCATATGATTATCAA
AGG





132
2527
-1
GAATTCGGAGACGAATGAGA
TGG





133
2542
-1
TTACAGCTCGGTTTTGAATT
CGG





134
2554
-1
TTTGTTTTTGAATTACAGCT
CGG





135
2592
-1
GATTTTGATTCGCTACTTTT
CGG





136
2639
-1
GAGGAGCTTATGGTATCGTT
TGG





137
2649
-1
CCTATTGGTAGAGGAGCTTA
TGG





138
2658
-1
CCGATTATGCCTATTGGTAG
AGG





139
2660
 1
CCATAAGCTCCTCTACCAAT
AGG





140
2664
-1
CGACCTCCGATTATGCCTAT
TGG





141
2669
 1
CCTCTACCAATAGGCATAAT
CGG





142
2672
 1
CTACCAATAGGCATAATCGG
AGG





143
2683
 1
CATAATCGGAGGTCGATACT
TGG





144
2715
-1
TACATTCAGTACAACATATT
TGG





145
2739
 1
ACTGAATGTACTGACCTCCA
TGG





146
2740
 1
CTGAATGTACTGACCTCCAT
GGG





147
2742
-1
CCCGCGATTCCTTCCCATGG
AGG





148
2744
 1
ATGTACTGACCTCCATGGGA
AGG





149
2745
-1
TTTCCCGCGATTCCTTCCCA
TGG





150
2752
 1
ACCTCCATGGGAAGGAATCG
CGG





151
2753
 1
CCTCCATGGGAAGGAATCGC
GGG





152
2770
-1
CGGAGGAGGACCTCAGTACA
CGG





153
2771
 1
GCGGGAAAATCCGTGTACTG
AGG





154
2782
 1
CGTGTACTGAGGTCCTCCTC
CGG





155
2784
-1
GCCGCTCCCGGAGCCGGAGG
AGG





156
2787
-1
GCCGCCGCTCCCGGAGCCGG
AGG





157
2788
 1
CTGAGGTCCTCCTCCGGCTC
CGG





158
2789
 1
TGAGGTCCTCCTCCGGCTCC
GGG





159
2790
-1
GGTGCCGCCGCTCCCGGAGC
CGG





160
2794
 1
TCCTCCTCCGGCTCCGGGAG
CGG





161
2796
-1
CTTCCCGGTGCCGCCGCTCC
CGG





162
2797
 1
TCCTCCGGCTCCGGGAGCGG
CGG





163
2803
 1
GGCTCCGGGAGCGGCGGCAC
CGG





164
2804
 1
GCTCCGGGAGCGGCGGCACC
GGG





165
2811
-1
GCCACTCATAACAATCTTCC
CGG





166
2821
 1
ACCGGGAAGATTGTTATGAG
TGG





167
2839
-1
AGAGAAGAGAAACTTCAATA
TGG





168
2967
-1
TGGTTTAAAAGTCTTGTCTT
TGG





169
2987
-1
ATTTTTGTTTGATTGAAATT
TGG





170
3056
 1
TTATTATTATTATTATTATG
AGG
















TABLE 2







gRNA (guide RNA) sequences and complementing PAMs


(protospacer adjacent motif) of CsBif2 (referred


to as SEQ ID NOs: 174-389 in the seq.listing


file).











Seq#
Position
Strand
Sequence
PAM





174
   8
-1
AAATTAAATGAAAAAGTTTT
AGG





175
 113
 1
AATATTATCGAATATTTTTT
TGG





176
 221
 1
ATATTGATAAAAAGAATATA
TGG





177
 238
 1
ATATGGAAACGATCCTTGAA
AGG





178
 239
 1
TATGGAAACGATCCTTGAAA
GGG





179
 240
-1
TTTTATATTACACCCTTTCA
AGG





180
 311
-1
TGTGTGGATTTTTCTTGAAT
TGG





181
 327
-1
TTGTAAATTGTAATGATGTG
TGG





182
 353
-1
GGTGCTCATATTTTGACTCT
TGG





183
 374
-1
GGGTGTAATTATTAATTTGT
GGG





184
 375
-1
TGGGTGTAATTATTAATTTG
TGG





185
 394
-1
GATTGGTTTAAAAGATATTT
GGG





186
 395
-1
TGATTGGTTTAAAAGATATT
TGG





187
 411
-1
CTAATTTAAGTAAATGTGAT
TGG





188
 475
 1
AAAATTAATTAATTAATTAA
TGG





189
 476
 1
AAATTAATTAATTAATTAAT
GGG





190
 525
-1
TTTTATTGTTGTTGTTATTT
TGG





191
 575
-1
CCAAAGGAGTGTAATAAATT
TGG





192
 586
 1
CCAAATTTATTACACTCCTT
TGG





193
 591
-1
TTCCTTTGAAGAAGAACCAA
AGG





194
 600
 1
CTCCTTTGGTTCTTCTTCAA
AGG





195
 623
-1
TGTTATGTAGTTTTATTTTG
AGG





196
 681
 1
AGATATAGTCTCATAATTAT
AGG





197
 716
-1
GCAACCATGGTTATCTTGTA
AGG





198
 723
 1
TACACCTTACAAGATAACCA
TGG





199
 729
-1
TTTGCATTGCATAGCAACCA
TGG





200
 764
-1
TTGGTTTTTAACAACTACTT
TGG





201
 783
-1
TGATTCTGCATTCAAAGATT
TGG





202
 797
 1
AATCTTTGAATGCAGAATCA
TGG





203
 877
 1
TATAGTAGATAGATAGTACT
AGG





204
 878
 1
ATAGTAGATAGATAGTACTA
GGG





205
 887
 1
AGATAGTACTAGGGTACTGC
TGG





206
 901
-1
TGACTTAAATTGAGAGCTTT
TGG





207
 926
 1
TTTAAGTCAAGAAAAAGAAA
AGG





208
 954
 1
TTTTTTTTTTAATGAAAGAG
AGG





209
1001
 1
CTATTGACAGAAGCAGCTTC
AGG





210
1005
 1
TGACAGAAGCAGCTTCAGGA
TGG





211
1034
-1
CAATGATAAGGGAAATGATG
TGG





212
1045
-1
TTTGATGGAACCAATGATAA
GGG





213
1046
 1
CACATCATTTCCCTTATCAT
TGG





214
1046
-1
ATTTGATGGAACCAATGATA
AGG





215
1060
-1
TGATATAGATGAGAATTTGA
TGG





216
1074
 1
TCAAATTCTCATCTATATCA
AGG





217
1082
 1
TCATCTATATCAAGGCTGAT
TGG





218
1089
 1
TATCAAGGCTGATTGGTACC
TGG





219
1090
 1
ATCAAGGCTGATTGGTACCT
GGG





220
1094
 1
AGGCTGATTGGTACCTGGGC
AGG





221
1096
-1
GAGACGAAACCCTCCTGCCC
AGG





222
1097
 1
CTGATTGGTACCTGGGCAGG
AGG





223
1098
 1
TGATTGGTACCTGGGCAGGA
GGG





224
1131
-1
CTTCAACACCCTTACATGTC
AGG





225
1133
 1
TCGTATAGTCCTGACATGTA
AGG





226
1134
 1
CGTATAGTCCTGACATGTAA
GGG





227
1172
 1
GTAACAGTGATCCTCTTTGT
TGG





228
1172
-1
TTGTGTTTGATCCAACAAAG
AGG





229
1214
 1
TCTAGCAAATCTATTGCTAA
TGG





230
1224
 1
CTATTGCTAATGGATCAGCA
TGG





231
1225
 1
TATTGCTAATGGATCAGCAT
GGG





232
1226
 1
ATTGCTAATGGATCAGCATG
GGG





233
1237
 1
ATCAGCATGGGGATATAGCC
TGG





234
1244
-1
CTAGGGGGACACATTTTTCC
AGG





235
1259
-1
AATCCCTGCCTTATTCTAGG
GGG





236
1260
-1
AAATCCCTGCCTTATTCTAG
GGG





237
1261
-1
AAAATCCCTGCCTTATTCTA
GGG





238
1262
 1
AAATGTGTCCCCCTAGAATA
AGG





239
1262
-1
TAAAATCCCTGCCTTATTCT
AGG





240
1266
 1
GTGTCCCCCTAGAATAAGGC
AGG





241
1267
 1
TGTCCCCCTAGAATAAGGCA
GGG





242
1285
 1
CAGGGATTTTATGAACTTTC
TGG





243
1292
 1
TTTATGAACTTTCTGGCCTT
TGG





244
1297
-1
CGAGTTTATTGATAATCCAA
AGG





245
1326
 1
ACTCGATATCTGTTTCACGC
TGG





246
1341
-1
AAACTAATCATCAATGTTCT
TGG





247
1359
 1
CATTGATGATTAGTTTAAGC
TGG





248
1365
 1
TGATTAGTTTAAGCTGGTTG
AGG





249
1378
 1
CTGGTTGAGGCATTCAGTTC
CGG





250
1379
 1
TGGTTGAGGCATTCAGTTCC
GGG





251
1386
-1
GGTAGAAAACCAATCTTTCC
CGG





252
1388
 1
CATTCAGTTCCGGGAAAGAT
TGG





253
1401
 1
GAAAGATTGGTTTTCTACCA
AGG





254
1407
-1
TGCATATTTGCTGAAATCCT
TGG





255
1431
-1
TCCATTGATGTCTGGTCTGT
AGG





256
1439
-1
ATGGAACATCCATTGATGTC
TGG





257
1441
 1
TCCTACAGACCAGACATCAA
TGG





258
1458
-1
CTTCTCTGTTGTGACAACTA
TGG





259
1477
 1
GTCACAACAGAGAAGTAGCT
CGG





260
1478
 1
TCACAACAGAGAAGTAGCTC
GGG





261
1499
-1
CAGAATATGTTGTGACTCGC
TGG





262
1532
-1
CGAGAACCAGTAGAGGAAAT
GGG





263
1533
-1
GCGAGAACCAGTAGAGGAAA
TGG





264
1537
 1
GAATTGCCCATTTCCTCTAC
TGG





265
1539
-1
GGTCTAGCGAGAACCAGTAG
AGG





266
1560
-1
GACCTAAAGATATGCGATTT
TGG





267
1569
 1
GACCAAAATCGCATATCTTT
AGG





268
1590
 1
GGTCACAATTAGCATTGACA
AGG





269
1593
 1
CACAATTAGCATTGACAAGG
AGG





270
1600
 1
AGCATTGACAAGGAGGTTCC
CGG





271
1601
 1
GCATTGACAAGGAGGTTCCC
GGG





272
1607
-1
TTCACCGAGACTTGAAGCCC
GGG





273
1608
-1
CTTCACCGAGACTTGAAGCC
CGG





274
1614
 1
GGTTCCCGGGCTTCAAGTCT
CGG





275
1658
-1
CTGTTGTGCAGTTGCTTCGC
GGG





276
1659
-1
ACTGTTGTGCAGTTGCTTCG
CGG





277
1690
 1
AGTGAAACATTCATAAGTAA
TGG





278
1704
-1
CAGTGGATTGATGCAATTTT
CGG





279
1721
-1
CTTTTAAGTACTGTTTTCAG
TGG





280
1750
 1
AAAAGAACTGTAAAACACAC
AGG





281
1796
-1
CTGCAAATACTTTTTATTTC
AGG





282
1824
 1
TTGCAGTGATCACTAGAAAG
CGG





283
1832
 1
ATCACTAGAAAGCGGTTGTG
AGG





284
1849
 1
GTGAGGACTTAATAATTTGA
TGG





285
1852
 1
AGGACTTAATAATTTGATGG
AGG





286
1871
-1
TTATCTGGTTTATGAGCTCA
TGG





287
1886
-1
AACTTTCAAAGATGTTTATC
TGG





288
1911
 1
TTGAAAGTTGCTCTATGAAT
AGG





289
1934
-1
TGAGAATGTGATTGCTTTAA
AGG





290
1968
-1
TGAGGGAGTTGAAGCTTCTT
AGG





291
1985
-1
AGATGCCCTGAGGACTCTGA
GGG





292
1986
-1
TAGATGCCCTGAGGACTCTG
AGG





293
1990
 1
TCAACTCCCTCAGAGTCCTC
AGG





294
1991
 1
CAACTCCCTCAGAGTCCTCA
GGG





295
1995
-1
AGAACCGCGTAGATGCCCTG
AGG





296
2002
 1
GAGTCCTCAGGGCATCTACG
CGG





297
2063
-1
GGTGTGCTCGTCGATCAATA
GGG





298
2064
-1
TGGTGTGCTCGTCGATCAAT
AGG





299
2084
 1
CGACGAGCACACCACGCCAT
AGG





300
2084
-1
AGGGAGAGGTGCCTATGGCG
TGG





301
2089
-1
CCAATAGGGAGAGGTGCCTA
TGG





302
2098
-1
CCTATCAAACCAATAGGGAG
AGG





303
2100
 1
CCATAGGCACCTCTCCCTAT
TGG





304
2103
-1
ATGTTCCTATCAAACCAATA
GGG





305
2104
-1
TATGTTCCTATCAAACCAAT
AGG





306
2109
 1
CCTCTCCCTATTGGTTTGAT
AGG





307
2120
 1
TGGTTTGATAGGAACATACT
TGG





308
2154
-1
GAAAGCATTACTACTCAATG
TGG





309
2176
-1
CCTAATGGAGTTAGGCAACA
AGG





310
2184
-1
TTGATCCCCCTAATGGAGTT
AGG





311
2187
 1
CCTTGTTGCCTAACTCCATT
AGG





312
2188
 1
CTTGTTGCCTAACTCCATTA
GGG





313
2189
 1
TTGTTGCCTAACTCCATTAG
GGG





314
2190
 1
TGTTGCCTAACTCCATTAGG
GGG





315
2191
-1
ACTTTGGTTGATCCCCCTAA
TGG





316
2207
-1
TGTAGGGAAAATGGCAACTT
TGG





317
2216
-1
TCGGTGATTTGTAGGGAAAA
TGG





318
2223
-1
ATTGATTTCGGTGATTTGTA
GGG





319
2224
-1
GATTGATTTCGGTGATTTGT
AGG





320
2235
-1
AAATGGGTGTTGATTGATTT
CGG





321
2251
-1
CTTGTGATTTAATCTTAAAT
GGG





322
2252
-1
TCTTGTGATTTAATCTTAAA
TGG





323
2346
-1
TTTTAACTCATTGTATAACT
GGG





324
2347
-1
GTTTTAACTCATTGTATAAC
TGG





325
2376
 1
AAAACTAAGAAAAAGTTAAG
AGG





326
2436
-1
AGAAGTAGAATTGGCAAGTA
AGG





327
2445
-1
TCATAACCCAGAAGTAGAAT
TGG





328
2449
 1
TTACTTGCCAATTCTACTTC
TGG





329
2450
 1
TACTTGCCAATTCTACTTCT
GGG





330
2472
 1
GTTATGATCTTCTCCCTATA
AGG





331
2474
-1
GTGTAGAGAATAACCTTATA
GGG





332
2475
-1
AGTGTAGAGAATAACCTTAT
AGG





333
2505
-1
TTTACTATTTAAAAAAAGAG
GGG





334
2506
-1
TTTTACTATTTAAAAAAAGA
GGG





335
2507
-1
ATTTTACTATTTAAAAAAAG
AGG





336
2531
-1
AGGGAAAAAGGCATAAAAGT
GGG





337
2532
-1
AAGGGAAAAAGGCATAAAAG
TGG





338
2543
-1
GAGAGAAGTCTAAGGGAAAA
AGG





339
2550
-1
AAGGAGAGAGAGAAGTCTAA
GGG





340
2551
-1
AAAGGAGAGAGAGAAGTCTA
AGG





341
2569
-1
AAGTGAACAAAGTGAGGAAA
AGG





342
2575
-1
GGTCATAAGTGAACAAAGTG
AGG





343
2596
-1
GGATTAAGTATATGAGAGGA
TGG





344
2600
-1
AAGAGGATTAAGTATATGAG
AGG





345
2617
-1
TGAGAGGTTTTTTTAGGAAG
AGG





346
2623
-1
TGAATTTGAGAGGTTTTTTT
AGG





347
2633
-1
GTGTGTGAACTGAATTTGAG
AGG





348
2673
-1
AAAAGATTGTTGTTTTGTTG
AGG





349
2696
-1
AAGGAGTTGTAAGAATCTAG
AGG





350
2715
-1
GAGAATAAGGAGAAGAATTA
AGG





351
2728
-1
TTGGCTTAATTTTGAGAATA
AGG





352
2747
-1
CAGAGTAAAAGTTTGATTCT
TGG





353
2772
-1
TTTTGAAGGAATCTTTTACT
TGG





354
2786
-1
TTGCTTGGTTTTGTTTTTGA
AGG





355
2801
-1
TTGGAAAGATGGGTTTTGCT
TGG





356
2811
-1
AGCTTTATTTTTGGAAAGAT
GGG





357
2812
-1
GAGCTTTATTTTTGGAAAGA
TGG





358
2820
-1
AAAGTACTGAGCTTTATTTT
TGG





359
2845
-1
TTTCTTTTCTTTTAATTGGA
GGG





360
2846
-1
TTTTCTTTTCTTTTAATTGG
AGG





361
2849
-1
ATTTTTTCTTTTCTTTTAAT
TGG





362
2886
 1
TTTTTGCAGAAACCCCAAAA
AGG





363
2887
 1
TTTTGCAGAAACCCCAAAAA
GGG





364
2887
-1
TCTTTCTTTTTCCCTTTTTG
GGG





365
2888
-1
CTCTTTCTTTTTCCCTTTTT
GGG





366
2889
-1
TCTCTTTCTTTTTCCCTTTT
TGG





367
2922
-1
ATGTTGGTTGTCAATTATTG
AGG





368
2938
-1
ATTTTTCTGATTATTCATGT
TGG





369
2965
 1
GAAAAATCTGAGATAATTGA
AGG





370
2993
-1
CACAGACCTGTTTCAGATAA
AGG





371
2998
 1
CAATATCCTTTATCTGAAAC
AGG





372
3050
-1
TTCTGTTCAAGACGATTTGA
AGG





373
3072
 1
TCTTGAACAGAAAAAAACTT
AGG





374
3089
-1
AAGTTTGTATCTTTAATGGT
GGG





375
3090
-1
AAAGTTTGTATCTTTAATGG
TGG





376
3093
-1
CTTAAAGTTTGTATCTTTAA
TGG





377
3120
-1
TTTTTCTCATTTTAAGTATT
GGG





378
3121
-1
ATTTTTCTCATTTTAAGTAT
TGG





379
3134
 1
AATACTTAAAATGAGAAAAA
TGG





380
3140
 1
TAAAATGAGAAAAATGGAAA
CGG





381
3141
 1
AAAATGAGAAAAATGGAAAC
GGG





382
3146
 1
GAGAAAAATGGAAACGGGTT
TGG





383
3147
 1
AGAAAAATGGAAACGGGTTT
GGG





384
3148
 1
GAAAAATGGAAACGGGTTTG
GGG





385
3155
 1
GGAAACGGGTTTGGGGAGAA
TGG





386
3156
 1
GAAACGGGTTTGGGGAGAAT
GGG





387
3157
 1
AAACGGGTTTGGGGAGAATG
GGG





388
3161
 1
GGGTTTGGGGAGAATGGGGC
AGG





389
3183
-1
GGTAGTGTCATGGGTGGGTT
TGG
















TABLE 3







gRNA (guide RNA) sequences and complementing PAMs


(protospacer adjacent motif) of CsJumonji


(referred to as SEQ ID NOs: 393-725 in the


seq.listing file).











Seq#
Position
Strand
Sequence
PAM





393
1321
 1
GAAAATGAAGTTAGCAAGTC
AGG





394
1340
 1
CAGGCTCTAGTTTGATATTG
TGG





395
1354
 1
ATATTGTGGCTCCAGAGAGC
AGG





396
1354
-1
TTTTTTATTGACCTGCTCTC
TGG





397
1369
 1
AGAGCAGGTCAATAAAAAAA
TGG





398
1392
 1
TGTGTAATCTAATAATGAAA
TGG





399
1400
 1
CTAATAATGAAATGGTGAAA
TGG





400
1426
-1
GGTTAGATTGAAAGAAGAAC
AGG





401
1447
-1
TAGGGTCAGAGACAGGTCAC
AGG





402
1454
-1
TCATTTCTAGGGTCAGAGAC
AGG





403
1465
-1
TCAGAGGCCCTTCATTTCTA
GGG





404
1466
-1
GTCAGAGGCCCTTCATTTCT
AGG





405
1468
 1
GTCTCTGACCCTAGAAATGA
AGG





406
1469
 1
TCTCTGACCCTAGAAATGAA
GGG





407
1481
-1
GCAAAACGCCTTAAAGTCAG
AGG





408
1484
 1
ATGAAGGGCCTCTGACTTTA
AGG





409
1505
-1
GAACCACACCCAGTAGATAT
TGG





410
1507
 1
CGTTTTGCTCCAATATCTAC
TGG





411
1508
 1
GTTTTGCTCCAATATCTACT
GGG





412
1513
 1
GCTCCAATATCTACTGGGTG
TGG





413
1527
-1
AGAGTTGGGTAAGAGCACGA
GGG





414
1528
-1
TAGAGTTGGGTAAGAGCACG
AGG





415
1541
-1
GATAGGTTTCAGTTAGAGTT
GGG





416
1542
-1
GGATAGGTTTCAGTTAGAGT
TGG





417
1558
-1
GAGAACAACCCAAAAAGGAT
AGG





418
1560
 1
TAACTGAAACCTATCCTTTT
TGG





419
1561
 1
AACTGAAACCTATCCTTTTT
GGG





420
1563
-1
ACTGAGAGAACAACCCAAAA
AGG





421
1598
-1
TTCAAGAATGTGGTTAATGA
GGG





422
1599
-1
ATTCAAGAATGTGGTTAATG
AGG





423
1608
-1
CTCTATAAAATTCAAGAATG
TGG





424
1624
 1
TTCTTGAATTTTATAGAGAT
CGG





425
1629
 1
GAATTTTATAGAGATCGGAA
TGG





426
1643
-1
AGAAAGATTTGTCAAGGAAG
GGG





427
1644
-1
CAGAAAGATTTGTCAAGGAA
GGG





428
1645
-1
ACAGAAAGATTTGTCAAGGA
AGG





429
1649
-1
AACGACAGAAAGATTTGTCA
AGG





430
1701
 1
CTATGATTAGTGAGCGTAGT
TGG





431
1730
-1
TCAGGTTGCACCAGAATTGT
GGG





432
1731
 1
AGAATTTGATCCCACAATTC
TGG





433
1731
-1
GTCAGGTTGCACCAGAATTG
TGG





434
1748
-1
GACAGAAGATCTGGGTCGTC
AGG





435
1756
-1
TTCAGCCTGACAGAAGATCT
GGG





436
1757
-1
TTTCAGCCTGACAGAAGATC
TGG





437
1762
 1
GACGACCCAGATCTTCTGTC
AGG





438
1798
-1
CTGAAATTTTTAATGGACAG
GGG





439
1799
-1
GCTGAAATTTTTAATGGACA
GGG





440
1800
-1
TGCTGAAATTTTTAATGGAC
AGG





441
1805
-1
CTGGTTGCTGAAATTTTTAA
TGG





442
1824
-1
CAATTGATGATTAACTTTTC
TGG





443
1840
 1
AAAGTTAATCATCAATTGTT
AGG





444
1852
 1
CAATTGTTAGGACACAATAC
TGG





445
1866
 1
CAATACTGGTTTATGAAACT
AGG





446
1898
 1
TTACGTGTAAACTAAGTACC
TGG





447
1901
 1
CGTGTAAACTAAGTACCTGG
TGG





448
1905
-1
ATCGAAGCATTCTGACCACC
AGG





449
1956
-1
ACGTCGTTCAACACAGAAGA
TGG





450
1983
-1
TTCTGATTCAGAGATATTCA
GGG





451
1984
-1
GTTCTGATTCAGAGATATTC
AGG





452
2020
 1
TCACTTTCTTCATCTAGAGT
AGG





453
2032
-1
ATTCTCATGAAAAGCTGGTT
AGG





454
2037
-1
AGATTATTCTCATGAAAAGC
TGG





455
2080
 1
GTCAAGTGTTCATCACATGA
CGG





456
2081
 1
TCAAGTGTTCATCACATGAC
GGG





457
2082
 1
CAAGTGTTCATCACATGACG
GGG





458
2119
-1
AGTTTTCAGAAGACTTGTCA
CGG





459
2158
-1
GGAACACTAGCTTTGATGTG
AGG





460
2179
-1
TTTATTTTCTCCAGGTACAT
GGG





461
2180
 1
AGCTAGTGTTCCCATGTACC
TGG





462
2180
-1
ATTTATTTTCTCCAGGTACA
TGG





463
2187
-1
TGCATCTATTTATTTTCTCC
AGG





464
2244
 1
GCACTCTAAATAATTCTGAA
AGG





465
2279
 1
ATACAGAAGTAGCCAACTAA
AGG





466
2280
-1
AGATACAGATCTCCTTTAGT
TGG





467
2302
 1
AGATCTGTATCTTACATTGC
TGG





468
2303
 1
GATCTGTATCTTACATTGCT
GGG





469
2314
 1
TACATTGCTGGGAGTGATTG
CGG





470
2324
 1
GGAGTGATTGCGGCTTCCGT
AGG





471
2325
 1
GAGTGATTGCGGCTTCCGTA
GGG





472
2329
-1
TTCTCTTCCTGTAGACCCTA
CGG





473
2333
 1
GCGGCTTCCGTAGGGTCTAC
AGG





474
2350
 1
TACAGGAAGAGAATGTAGAG
TGG





475
2356
 1
AAGAGAATGTAGAGTGGATG
TGG





476
2362
 1
ATGTAGAGTGGATGTGGTAC
AGG





477
2385
-1
AGTTTAAATTCTGAAATGTT
AGG





478
2414
-1
AGTGCACAGGTGTCAAGTAG
TGG





479
2427
-1
TCATGTTTCGTGTAGTGCAC
AGG





480
2482
 1
TGAGTAGTATCACTAAGTTT
TGG





481
2483
 1
GAGTAGTATCACTAAGTTTT
GGG





482
2503
 1
GGGATCGAGTCAAATTTGAT
CGG





483
2512
 1
TCAAATTTGATCGGACAGTA
AGG





484
2532
-1
GTCACATAAAGTTAAGCAGG
AGG





485
2535
-1
CATGTCACATAAAGTTAAGC
AGG





486
2557
 1
TTATGTGACATGTTTGCTAA
TGG





487
2589
-1
GATTAATCAGCAATCTAATA
GGG





488
2590
-1
AGATTAATCAGCAATCTAAT
AGG





489
2611
 1
TGCTGATTAATCTTCTTTTC
TGG





490
2631
-1
AGCTAGAAAGTTTGAAATGG
AGG





491
2634
-1
TGCAGCTAGAAAGTTTGAAA
TGG





492
2661
-1
AAGGGAGGATATATCAGAAA
TGG





493
2676
-1
CTGTACGCTCTGTTTAAGGG
AGG





494
2679
-1
ACACTGTACGCTCTGTTTAA
GGG





495
2680
-1
GACACTGTACGCTCTGTTTA
AGG





496
2700
 1
GAGCGTACAGTGTCTTCCAC
AGG





497
2705
-1
ACGTCTTTAAATTTTTCCTG
TGG





498
2776
 1
TAAGAGTGTGTAAGAATCCA
AGG





499
2782
-1
AATGCTATATGTTTCTGCCT
TGG





500
2795
 1
AAGGCAGAAACATATAGCAT
TGG





501
2811
 1
GCATTGGTAAAATCCCCCTG
TGG





502
2812
 1
CATTGGTAAAATCCCCCTGT
GGG





503
2813
-1
ACTTAACAGCAGCCCACAGG
GGG





504
2814
-1
TACTTAACAGCAGCCCACAG
GGG





505
2815
-1
CTACTTAACAGCAGCCCACA
GGG





506
2816
-1
CCTACTTAACAGCAGCCCAC
AGG





507
2827
 1
CCTGTGGGCTGCTGTTAAGT
AGG





508
2832
 1
GGGCTGCTGTTAAGTAGGAA
TGG





509
2847
-1
CCAATGGGACTTTTGATACT
GGG





510
2848
-1
CCCAATGGGACTTTTGATAC
TGG





511
2858
 1
CCCAGTATCAAAAGTCCCAT
TGG





512
2859
 1
CCAGTATCAAAAGTCCCATT
GGG





513
2862
-1
AATTATGACCTCTACCCAAT
GGG





514
2863
-1
GAATTATGACCTCTACCCAA
TGG





515
2865
 1
TCAAAAGTCCCATTGGGTAG
AGG





516
2899
-1
GTATTCATCACCATTTTAAT
GGG





517
2900
 1
AAGTTTATATCCCATTAAAA
TGG





518
2900
-1
TGTATTCATCACCATTTTAA
TGG





519
2988
-1
CAGCCTAGTGTTTGCGTGTT
TGG





520
2996
 1
AATCCAAACACGCAAACACT
AGG





521
3000
 1
CAAACACGCAAACACTAGGC
TGG





522
3023
 1
ATAGAAGCATACCATGACGA
AGG





523
3023
-1
CATCCTGTCTGCCTTCGTCA
TGG





524
3031
 1
ATACCATGACGAAGGCAGAC
AGG





525
3095
 1
CACGTTTACATAAGCTGCAC
AGG





526
3113
-1
AGTGTGTCTGCAAATCGGCA
TGG





527
3118
-1
GTACTAGTGTGTCTGCAAAT
CGG





528
3145
-1
GCTGGTTGCTAATGAAATCA
GGG





529
3146
-1
CGCTGGTTGCTAATGAAATC
AGG





530
3163
-1
GTTTCTTGCATCGAGCTCGC
TGG





531
3176
 1
AGCGAGCTCGATGCAAGAAA
CGG





532
3204
 1
CTTCACAAAAGAAGTTTTAA
TGG





533
3216
 1
AGTTTTAATGGAACAATGAG
AGG





534
3228
-1
GGATCATTCTTCTGCTGACT
TGG





535
3249
-1
GAGTTTAGAGCTTGAAGATT
TGG





536
3304
 1
TTGCAAAGTAGTTCTTCATG
AGG





537
3313
 1
AGTTCTTCATGAGGAAGCAA
AGG





538
3328
-1
AACGCTATGCACTTCTTAGT
AGG





539
3341
 1
TACTAAGAAGTGCATAGCGT
TGG





540
3360
 1
TTGGCTAGCAACAGCACCCA
AGG





541
3361
 1
TGGCTAGCAACAGCACCCAA
GGG





542
3365
-1
ATTGGTGACTGGTTTCCCTT
GGG





543
3366
-1
AATTGGTGACTGGTTTCCCT
TGG





544
3376
-1
TGAACTTTGCAATTGGTGAC
TGG





545
3383
-1
GAAGCAGTGAACTTTGCAAT
TGG





546
3407
-1
GGAACTGTAGGCTTCAATTG
TGG





547
3419
-1
ACTTTTCCTTTTGGAACTGT
AGG





548
3424
 1
TTGAAGCCTACAGTTCCAAA
AGG





549
3428
-1
AGAAATTGTACTTTTCCTTT
TGG





550
3529
-1
TATCATGCTGGATTTAATCA
TGG





551
3541
-1
TTCCCTAGAGCATATCATGC
TGG





552
3549
 1
AATCCAGCATGATATGCTCT
AGG





553
3550
 1
ATCCAGCATGATATGCTCTA
GGG





554
3573
 1
AACGTAACTATGAACTCTCC
AGG





555
3580
-1
TACAAGGCAGTGCAAAAACC
TGG





556
3596
-1
TCATGACGTCCCTGTGTACA
AGG





557
3597
 1
TTTTGCACTGCCTTGTACAC
AGG





558
3598
 1
TTTGCACTGCCTTGTACACA
GGG





559
3620
-1
ATTTCCTCCTAATATTCTAT
TGG





560
3624
 1
TCATGATCCAATAGAATATT
AGG





561
3627
 1
TGATCCAATAGAATATTAGG
AGG





562
3654
-1
GGGCTTTTGATGTTTTATTG
GGG





563
3655
-1
GGGGCTTTTGATGTTTTATT
GGG





564
3656
-1
TGGGGCTTTTGATGTTTTAT
TGG





565
3674
-1
TTCTGCTGATGGGGAGGATG
GGG





566
3675
-1
TTTCTGCTGATGGGGAGGAT
GGG





567
3676
-1
CTTTCTGCTGATGGGGAGGA
TGG





568
3680
-1
CATCCTTTCTGCTGATGGGG
AGG





569
3683
-1
TGACATCCTTTCTGCTGATG
GGG





570
3684
-1
ATGACATCCTTTCTGCTGAT
GGG





571
3685
-1
CATGACATCCTTTCTGCTGA
TGG





572
3688
 1
CATCCTCCCCATCAGCAGAA
AGG





573
3722
-1
GCAGTTTGAAAAGGTTGTTA
GGG





574
3723
-1
TGCAGTTTGAAAAGGTTGTT
AGG





575
3731
-1
TGCTGCTTTGCAGTTTGAAA
AGG





576
3750
 1
AACTGCAAAGCAGCATGACC
TGG





577
3757
-1
AAAACTTGGTATGGCATTCC
AGG





578
3766
-1
GGTGCTTCAAAAACTTGGTA
TGG





579
3771
-1
ACTGCGGTGCTTCAAAAACT
TGG





580
3787
-1
AGTATTAATTATCATCACTG
CGG





581
3828
 1
GAGTGAGAAAATTAATAGAG
TGG





582
3829
 1
AGTGAGAAAATTAATAGAGT
GGG





583
3830
 1
GTGAGAAAATTAATAGAGTG
GGG





584
3870
 1
AAATTAGCATGAAAGTTTTA
TGG





585
3890
-1
AGGTATATGTTATTCTTGAG
AGG





586
3910
-1
TCGAGGATCATTATCTATAC
AGG





587
3927
-1
CATGTTTGCTTGGCATGTCG
AGG





588
3937
-1
TGCTATTTAGCATGTTTGCT
TGG





589
3962
-1
ACTGATCCTATGCTCTATAT
TGG





590
3967
 1
AGCATTCCAATATAGAGCAT
AGG





591
3989
-1
AATGTTTATTTTTTTTCACA
GGG





592
3990
-1
TAATGTTTATTTTTTTTCAC
AGG





593
4068
 1
AGATAAGTTAGTATTGTTAC
AGG





594
4119
-1
TTTTGTTTCAGAGACTGTCA
AGG





595
4227
-1
CTAGATCTAAGGGTGTTTTT
TGG





596
4237
-1
ACAAAATTGTCTAGATCTAA
GGG





597
4238
-1
CACAAAATTGTCTAGATCTA
AGG





598
4279
 1
ATTATAATTTACCAAAAACT
AGG





599
4279
-1
GCACTATTTTTCCTAGTTTT
TGG





600
4301
-1
AGTTCAGGCTCTTATGTTAT
AGG





601
4316
-1
GGTCTTCCCCTATTTAGTTC
AGG





602
4319
 1
CATAAGAGCCTGAACTAAAT
AGG





603
4320
 1
ATAAGAGCCTGAACTAAATA
GGG





604
4321
 1
TAAGAGCCTGAACTAAATAG
GGG





605
4337
-1
TGTAGCTATGTTTTTGTTTT
TGG





606
4386
-1
AAGGACAGAAAGAAGCTGTA
TGG





607
4405
-1
TACGTTTTCTGTTCAATGCA
AGG





608
4596
 1
TCATTATAATGATTACATTA
CGG





609
4652
-1
GAAGGATAATAATTTTTTTG
AGG





610
4670
-1
TATTTATATTGGTTAGTTGA
AGG





611
4681
-1
ATGTATGTACGTATTTATAT
TGG





612
4706
-1
TTCTGTCCGTAATCTTTACT
TGG





613
4711
 1
ACATATCCAAGTAAAGATTA
CGG





614
4751
 1
GATCACAAACAAGAATAAAA
AGG





615
4783
-1
GAATAGCAAATGGAACTTGA
AGG





616
4793
-1
ATCAGCTTGGGAATAGCAAA
TGG





617
4805
-1
CTTCTCCCAGTGATCAGCTT
GGG





618
4806
-1
GCTTCTCCCAGTGATCAGCT
TGG





619
4810
 1
GCTATTCCCAAGCTGATCAC
TGG





620
4811
 1
CTATTCCCAAGCTGATCACT
GGG





621
4842
-1
GAGTATGCTTGTGATGTTGA
TGG





622
4864
 1
ACAAGCATACTCCACCGTTT
CGG





623
4864
-1
TTGTGGAAAGACCGAAACGG
TGG





624
4867
-1
TGCTTGTGGAAAGACCGAAA
CGG





625
4881
-1
TTTTGGCATGAGATTGCTTG
TGG





626
4898
-1
CATATCTGGAAAAGGAATTT
TGG





627
4906
-1
TCCTGCCTCATATCTGGAAA
AGG





628
4912
 1
AAATTCCTTTTCCAGATATG
AGG





629
4912
-1
TAGTCTTCCTGCCTCATATC
TGG





630
4916
 1
TCCTTTTCCAGATATGAGGC
AGG





631
4935
-1
TCTAGACGATATTATAGCTC
TGG





632
4963
-1
TTTTGAGAAAATGGCAAACA
AGG





633
4972
-1
ATTCCGTGATTTTGAGAAAA
TGG





634
4980
 1
TTGCCATTTTCTCAAAATCA
CGG





635
5014
-1
TCTCATTTTTTGAATATGGA
TGG





636
5018
-1
TTTTTCTCATTTTTTGAATA
TGG





637
5068
-1
AAGTGTGTATACTAAATAGA
AGG





638
5092
-1
TTACATTTTTCATGAGCGGA
AGG





639
5096
-1
AAAGTTACATTTTTCATGAG
CGG





640
5130
-1
ACCTCTCCGTCTAGCTGAGT
GGG





641
5131
-1
AACCTCTCCGTCTAGCTGAG
TGG





642
5135
 1
CAGTGTCCCACTCAGCTAGA
CGG





643
5140
 1
TCCCACTCAGCTAGACGGAG
AGG





644
5150
 1
CTAGACGGAGAGGTTGCACT
CGG





645
5151
 1
TAGACGGAGAGGTTGCACTC
GGG





646
5170
 1
CGGGTTGTGAACTTAAATCC
CGG





647
5177
-1
GTATTGATGAAGGAGCAACC
GGG





648
5178
-1
TGTATTGATGAAGGAGCAAC
CGG





649
5187
-1
AGCTGGGGTTGTATTGATGA
AGG





650
5200
 1
TTCATCAATACAACCCCAGC
TGG





651
5202
-1
GACTGCTTCTGTTCCAGCTG
GGG





652
5203
-1
TGACTGCTTCTGTTCCAGCT
GGG





653
5204
-1
GTGACTGCTTCTGTTCCAGC
TGG





654
5218
 1
GCTGGAACAGAAGCAGTCAC
AGG





655
5249
-1
TTTTTTTGCTTGATAATTTC
AGG





656
5314
 1
GAATAGACAGCTGCAACTTA
AGG





657
5326
 1
GCAACTTAAGGTTTATGTAT
TGG





658
5340
-1
TCCCACTTTGTTATTATTAT
TGG





659
5349
 1
AACCAATAATAATAACAAAG
TGG





660
5350
 1
ACCAATAATAATAACAAAGT
GGG





661
5395
 1
TGTGTGTGCGAAAAATAAAA
CGG





662
5396
 1
GTGTGTGCGAAAAATAAAAC
GGG





663
5436
 1
AAATAAAAATTAAAAGAAAA
AGG





664
5471
 1
ACTATTTTTCTTTTTAAATC
AGG





665
5482
 1
TTTTAAATCAGGATAGAGAA
AGG





666
5500
-1
TTGTAGCTTGTTACGAAGCT
TGG





667
5550
-1
AGTGTTCATATCTGTACTTC
AGG





668
5574
-1
ATTTCTAAAGTTAGGCTAAG
AGG





669
5582
-1
AGAGCTACATTTCTAAAGTT
AGG





670
5618
 1
TTATAAAGATAAAGAAATTA
TGG





671
5667
-1
AGAAATTAGGCTTCATCATA
TGG





672
5680
-1
AACCTTTATTACAAGAAATT
AGG





673
5689
 1
AGCCTAATTTCTTGTAATAA
AGG





674
5708
 1
AAGGTTAAATTAATAATATA
AGG





675
5713
 1
TAAATTAATAATATAAGGTG
TGG





676
5725
-1
TGAGTATTTTATGATGAATG
TGG





677
5753
-1
TATTTATAATATAGCAGTAG
TGG





678
5817
-1
AGGCACCATCACATATCAGT
TGG





679
5823
 1
AATGACCAACTGATATGTGA
TGG





680
5832
 1
CTGATATGTGATGGTGCCTC
AGG





681
5837
-1
TAGTTTTCCACATTGTCCTG
AGG





682
5841
 1
GATGGTGCCTCAGGACAATG
TGG





683
5850
 1
TCAGGACAATGTGGAAAACT
AGG





684
5902
 1
TAGATAGCATTTGCTTTTTC
TGG





685
6041
-1
GCTCCAGAAGCTTCTGGATA
TGG





686
6047
-1
AAGATCGCTCCAGAAGCTTC
TGG





687
6049
 1
ATACCATATCCAGAAGCTTC
TGG





688
6076
 1
ATCTTCTGCAAATAAATCAG
AGG





689
6077
 1
TCTTCTGCAAATAAATCAGA
GGG





690
6090
-1
TCCAACAAAAGAGGAGTTTG
AGG





691
6099
-1
TATATATTATCCAACAAAAG
AGG





692
6100
 1
TCCTCAAACTCCTCTTTTGT
TGG





693
6112
 1
TCTTTTGTTGGATAATATAT
AGG





694
6121
 1
GGATAATATATAGGACACTC
AGG





695
6145
-1
TTGACACAAGTGATCTGGAA
TGG





696
6150
-1
TAAGTTTGACACAAGTGATC
TGG





697
6174
-1
TGTTATTTCGAAGCGGAAGG
TGG





698
6177
-1
GGATGTTATTTCGAAGCGGA
AGG





699
6181
-1
GGAAGGATGTTATTTCGAAG
CGG





700
6198
-1
AAATGGTCCTTTAAGTGGGA
AGG





701
6202
 1
ATAACATCCTTCCCACTTAA
AGG





702
6202
-1
GATCAAATGGTCCTTTAAGT
GGG





703
6203
-1
GGATCAAATGGTCCTTTAAG
TGG





704
6215
-1
GATGTTTTTTCTGGATCAAA
TGG





705
6224
-1
GGCAATGCAGATGTTTTTTC
TGG





706
6245
-1
TCTTGCGGTGTTAGATTACA
TGG





707
6260
-1
TTAAGATCTTCAGCATCTTG
CGG





708
6290
-1
AGTACAATGGCTCGAAGTGG
AGG





709
6293
-1
AGCAGTACAATGGCTCGAAG
TGG





710
6303
-1
AGAAACTATCAGCAGTACAA
TGG





711
6327
-1
CAAAAGGCTTCAGCGTATGA
AGG





712
6343
-1
TGGAGTTTCTGAAGCGCAAA
AGG





713
6363
-1
AAAGGAGGTCAGAAATGGGT
TGG





714
6367
-1
TATCAAAGGAGGTCAGAAAT
GGG





715
6368
-1
TTATCAAAGGAGGTCAGAAA
TGG





716
6378
-1
AAGGGTTTGTTTATCAAAGG
AGG





717
6381
-1
GGGAAGGGTTTGTTTATCAA
AGG





718
6396
-1
TGTTTGACAGGTGGAGGGAA
GGG





719
6397
-1
TTGTTTGACAGGTGGAGGGA
AGG





720
6401
-1
AAACTTGTTTGACAGGTGGA
GGG





721
6402
-1
TAAACTTGTTTGACAGGTGG
AGG





722
6405
-1
ATGTAAACTTGTTTGACAGG
TGG





723
6408
-1
CCCATGTAAACTTGTTTGAC
AGG





724
6418
 1
ACCTGTCAAACAAGTTTACA
TGG





725
6419
 1
CCTGTCAAACAAGTTTACAT
GGG
















TABLE 4







gRNA (guide RNA) sequences and complementing PAMs


(protospacer adjacent motif) of CsMultiflora (referred to a


SEQ ID NOs: 729-935 in the seq.listing file).











Seq#
Position
Strand
Sequence
PAM





729
 370
 1
ATAAGAAGTGATGTTGTGTC
TGG





730
 377
 1
GTGATGTTGTGTCTGGCTAG
AGG





731
 391
-1
GCTCTTGTTTTTGGTAGTAT
TGG





732
 400
-1
CGTTTTGTTGCTCTTGTTTT
TGG





733
 412
 1
CAAAAACAAGAGCAACAAAA
CGG





734
 437
 1
TTGCATCATTGTTTCTCACT
TGG





735
 441
 1
ATCATTGTTTCTCACTTGGC
TGG





736
 502
 1
AGAACTCAGTTCTCCAAAGC
TGG





737
 504
-1
TTGCTTATATGAACCAGCTT
TGG





738
 524
 1
GTTCATATAAGCAATCATTA
TGG





739
 544
 1
TGGCTTCATCAAACCGACAC
TGG





740
 546
-1
TGAACATACTAGGCCAGTGT
CGG





741
 556
-1
GGCTTGGACTTGAACATACT
AGG





742
 572
-1
GTGGTGGCTATTGCAAGGCT
TGG





743
 577
-1
CATTGGTGGTGGCTATTGCA
AGG





744
 588
-1
TGTCATGCTGCCATTGGTGG
TGG





745
 589
 1
CTTGCAATAGCCACCACCAA
TGG





746
 591
-1
TGATGTCATGCTGCCATTGG
TGG





747
 594
-1
GGTTGATGTCATGCTGCCAT
TGG





748
 615
-1
ATCCACTAGTCATGAGCGAT
GGG





749
 616
-1
TATCCACTAGTCATGAGCGA
TGG





750
 624
 1
AACCCATCGCTCATGACTAG
TGG





751
 639
-1
CTGAAGCGTACGGAGGTCTG
TGG





752
 646
-1
TATATACCTGAAGCGTACGG
AGG





753
 649
-1
ATATATATACCTGAAGCGTA
CGG





754
 651
 1
CACAGACCTCCGTACGCTTC
AGG





755
 716
-1
TTGACAACTTTTCAAAAAAT
AGG





756
 763
-1
GGAATATTGCATGTACTTCT
TGG





757
 784
-1
AATTATAAAATGCAACACAT
GGG





758
 785
-1
TAATTATAAAATGCAACACA
TGG





759
 811
-1
CCACCAACTGTAGTATAGAA
AGG





760
 819
 1
AAACCTTTCTATACTACAGT
TGG





761
 822
 1
CCTTTCTATACTACAGTTGG
TGG





762
 823
 1
CTTTCTATACTACAGTTGGT
GGG





763
 835
 1
CAGTTGGTGGGTGTGATGAG
AGG





764
 842
 1
TGGGTGTGATGAGAGGAGTC
CGG





765
 850
-1
TTCCATCTGGGCTTCGGCTC
CGG





766
 856
-1
TTCGGGTTCCATCTGGGCTT
CGG





767
 859
 1
GTCCGGAGCCGAAGCCCAGA
TGG





768
 862
-1
TCCGGTTTCGGGTTCCATCT
GGG





769
 863
-1
CTCCGGTTTCGGGTTCCATC
TGG





770
 872
 1
GCCCAGATGGAACCCGAAAC
CGG





771
 873
-1
TTCGAATCTGCTCCGGTTTC
GGG





772
 874
-1
ATTCGAATCTGCTCCGGTTT
CGG





773
 880
-1
TCAAGGATTCGAATCTGCTC
CGG





774
 897
-1
CAGAGTTAAAGATCGCTTCA
AGG





775
 909
 1
CTTGAAGCGATCTTTAACTC
TGG





776
 914
 1
AGCGATCTTTAACTCTGGCA
TGG





777
 931
-1
CTTCTAATCTCGTCTCTCGG
GGG





778
 932
-1
CCTTCTAATCTCGTCTCTCG
GGG





779
 933
-1
TCCTTCTAATCTCGTCTCTC
GGG





780
 934
-1
ATCCTTCTAATCTCGTCTCT
CGG





781
 943
 1
CCCCGAGAGACGAGATTAGA
AGG





782
 962
-1
TTGTCCATACTCTTGCAATT
GGG





783
 963
-1
CTTGTCCATACTCTTGCAAT
TGG





784
 969
 1
AGAGCCCAATTGCAAGAGTA
TGG





785
 978
 1
TTGCAAGAGTATGGACAAGT
TGG





786
 995
-1
TTGAAACCAATAAAACACAT
TGG





787
1000
 1
GTGATGCCAATGTGTTTTAT
TGG





788
1021
 1
GGTTTCAAAACAGAAAATCT
AGG





789
1047
-1
GTTTGGAGTTTTGGAGGTGG
CGG





790
1050
-1
GTTGTTTGGAGTTTTGGAGG
TGG





791
1053
-1
TTTGTTGTTTGGAGTTTTGG
AGG





792
1056
-1
GGGTTTGTTGTTTGGAGTTT
TGG





793
1064
-1
ATTTTGAAGGGTTTGTTGTT
TGG





794
1076
-1
AGTTGGAGTTGGATTTTGAA
GGG





795
1077
-1
GAGTTGGAGTTGGATTTTGA
AGG





796
1087
-1
GAGGAAGGAGGAGTTGGAGT
TGG





797
1093
-1
GTGGCTGAGGAAGGAGGAGT
TGG





798
1099
-1
GGAGCGGTGGCTGAGGAAGG
AGG





799
1102
-1
GAAGGAGCGGTGGCTGAGGA
AGG





800
1106
-1
AGAGGAAGGAGCGGTGGCTG
AGG





801
1112
-1
AGACGAAGAGGAAGGAGCGG
TGG





802
1115
-1
AGAAGACGAAGAGGAAGGAG
CGG





803
1120
-1
GACGAAGAAGACGAAGAGGA
AGG





804
1124
-1
AGACGACGAAGAAGACGAAG
AGG





805
1159
-1
AAGCCTCTCGATCGGGATTT
GGG





806
1160
-1
GAAGCCTCTCGATCGGGATT
TGG





807
1166
-1
TGATGAGAAGCCTCTCGATC
GGG





808
1167
 1
TCTCCCAAATCCCGATCGAG
AGG





809
1167
-1
ATGATGAGAAGCCTCTCGAT
CGG





810
1184
 1
GAGAGGCTTCTCATCATCAT
TGG





811
1185
 1
AGAGGCTTCTCATCATCATT
GGG





812
1206
-1
GATGATTAGTAGTACTGGCT
AGG





813
1211
-1
ATGATGATGATTAGTAGTAC
TGG





814
1242
-1
AAGAAGTTGGACTAGTTTGA
TGG





815
1255
-1
TTATTATTGACCGAAGAAGT
TGG





816
1256
 1
TCAAACTAGTCCAACTTCTT
CGG





817
1283
-1
AATGTTGTTGGTTTGAAAGA
TGG





818
1295
-1
AGTATTATTATTAATGTTGT
TGG





819
1333
-1
AAGAAATAGTGTTGATCGGT
TGG





820
1337
-1
CGGGAAGAAATAGTGTTGAT
CGG





821
1349
 1
CGATCAACACTATTTCTTCC
CGG





822
1356
-1
GGTGATGATTAGGCACGGCC
GGG





823
1357
-1
GGGTGATGATTAGGCACGGC
CGG





824
1361
-1
ACTGGGGTGATGATTAGGCA
CGG





825
1366
-1
GTAGAACTGGGGTGATGATT
AGG





826
1377
-1
CAGGAACAGGAGTAGAACTG
GGG





827
1378
-1
GCAGGAACAGGAGTAGAACT
GGG





828
1379
-1
AGCAGGAACAGGAGTAGAAC
TGG





829
1390
-1
TGACTGGTATTAGCAGGAAC
AGG





830
1396
-1
AACCCTTGACTGGTATTAGC
AGG





831
1404
 1
GTTCCTGCTAATACCAGTCA
AGG





832
1405
 1
TTCCTGCTAATACCAGTCAA
GGG





833
1406
-1
AGGGAAGCAAAACCCTTGAC
TGG





834
1425
-1
AGAGCTCATGATTTTGAGGA
GGG





835
1426
-1
GAGAGCTCATGATTTTGAGG
AGG





836
1429
-1
TGAGAGAGCTCATGATTTTG
AGG





837
1443
 1
CAAAATCATGAGCTCTCTCA
TGG





838
1444
 1
AAAATCATGAGCTCTCTCAT
GGG





839
1445
 1
AAATCATGAGCTCTCTCATG
GGG





840
1465
-1
TTCTGTATCTCCATGTGATG
AGG





841
1466
 1
GGTAGTACTACCTCATCACA
TGG





842
1482
 1
CACATGGAGATACAGAATAT
AGG





843
1483
 1
ACATGGAGATACAGAATATA
GGG





844
1495
-1
CTAAGTAAAAGGCTTGTACA
AGG





845
1506
-1
TCATGATCTCACTAAGTAAA
AGG





846
1527
 1
AGTGAGATCATGAACCAAAA
CGG





847
1530
-1
CTTTCTTTAAGTCACCGTTT
TGG





848
1553
 1
CTTAAAGAAAGACCATCACG
AGG





849
1554
-1
GATAATTATTCACCTCGTGA
TGG





850
1598
 1
GATGATGAAGATGAGCTCTA
CGG





851
1651
 1
CTTGTCTGATGACGCCGACT
AGG





852
1654
-1
GTAGTGGCCGGAGTCCTAGT
CGG





853
1658
 1
GATGACGCCGACTAGGACTC
CGG





854
1666
-1
ACGTTAGACGGAGTAGTGGC
CGG





855
1670
-1
GACGACGTTAGACGGAGTAG
TGG





856
1678
-1
GATGAAACGACGACGTTAGA
CGG





857
1702
-1
GCAGTAGTAGCGTGGTGGTG
AGG





858
1707
-1
TCGTTGCAGTAGTAGCGTGG
TGG





859
1710
-1
TAGTCGTTGCAGTAGTAGCG
TGG





860
1744
-1
ATTTGATTGAGGGGGACAGA
TGG





861
1752
-1
TACCTTGGATTTGATTGAGG
GGG





862
1753
-1
TTACCTTGGATTTGATTGAG
GGG





863
1754
-1
TTTACCTTGGATTTGATTGA
GGG





864
1755
-1
TTTTACCTTGGATTTGATTG
AGG





865
1761
 1
GTCCCCCTCAATCAAATCCA
AGG





866
1767
-1
CATTTTATTTTATTTTACCT
TGG





867
1789
 1
TAAAATAAAATGTTACCACA
TGG





868
1793
-1
TTTTCAGTTACAGTTCCATG
TGG





869
1820
 1
CTGAAAATCGAAATTTTGTT
TGG





870
1881
 1
GTTATATAAAAATTTTAACA
CGG





871
1882
 1
TTATATAAAAATTTTAACAC
GGG





872
1887
 1
TAAAAATTTTAACACGGGAG
AGG





873
1934
 1
ATTTACAAATTATTATACAT
TGG





874
1946
 1
TTATACATTGGTAAAAGATC
AGG





875
1963
 1
ATCAGGACAATATTGTCTAA
TGG





876
1964
 1
TCAGGACAATATTGTCTAAT
GGG





877
1977
-1
TCCATCTACACTCAGATCGC
TGG





878
1987
 1
TCCAGCGATCTGAGTGTAGA
TGG





879
1999
 1
AGTGTAGATGGACGTGTGCA
TGG





880
2005
 1
GATGGACGTGTGCATGGATT
TGG





881
2008
 1
GGACGTGTGCATGGATTTGG
TGG





882
2014
 1
GTGCATGGATTTGGTGGTGT
TGG





883
2022
 1
ATTTGGTGGTGTTGGTCCTT
AGG





884
2027
-1
AATATGAAACAGTCGACCTA
AGG





885
2052
 1
TTTCATATTGATCTTTGTAT
TGG





886
2053
 1
TTCATATTGATCTTTGTATT
GGG





887
2118
 1
TTATTTATGACGAAAGTAAT
AGG





888
2119
 1
TATTTATGACGAAAGTAATA
GGG





889
2128
 1
CGAAAGTAATAGGGTACTAC
TGG





890
2129
 1
GAAAGTAATAGGGTACTACT
GGG





891
2154
 1
TATTTAATTAATAAATTATT
AGG





892
2189
-1
AAAAAGCAAAGTTATAAAGG
AGG





893
2192
-1
CAGAAAAAGCAAAGTTATAA
AGG





894
2231
-1
TCTCCACGATCGATCGAATA
AGG





895
2239
 1
ATACCTTATTCGATCGATCG
TGG





896
2277
 1
TTACATATATTTATGAGAAC
AGG





897
2286
 1
TTTATGAGAACAGGTGTTGT
AGG





898
2300
 1
TGTTGTAGGAGAAGATGAAC
AGG





899
2301
 1
GTTGTAGGAGAAGATGAACA
GGG





900
2306
 1
AGGAGAAGATGAACAGGGAG
TGG





901
2309
 1
AGAAGATGAACAGGGAGTGG
TGG





902
2310
 1
GAAGATGAACAGGGAGTGGT
GGG





903
2316
 1
GAACAGGGAGTGGTGGGTCC
AGG





904
2319
 1
CAGGGAGTGGTGGGTCCAGG
TGG





905
2323
-1
TTTGCCACACCATCTCCACC
TGG





906
2325
 1
GTGGTGGGTCCAGGTGGAGA
TGG





907
2330
 1
GGGTCCAGGTGGAGATGGTG
TGG





908
2345
 1
TGGTGTGGCAAATAAAACGA
TGG





909
2363
 1
GATGGTGTTCATAAACGACG
TGG





910
2372
 1
CATAAACGACGTGGCCTTCG
AGG





911
2375
 1
AAACGACGTGGCCTTCGAGG
TGG





912
2375
-1
TGGCCCAGCGGCCACCTCGA
AGG





913
2382
 1
GTGGCCTTCGAGGTGGCCGC
TGG





914
2383
 1
TGGCCTTCGAGGTGGCCGCT
GGG





915
2387
-1
GCGCACGTTGAATGGCCCAG
CGG





916
2395
-1
AAAGCCTCGCGCACGTTGAA
TGG





917
2402
 1
TGGGCCATTCAACGTGCGCG
AGG





918
2409
 1
TTCAACGTGCGCGAGGCTTT
TGG





919
2439
 1
GCTGTACTTATTCACTCCAA
TGG





920
2444
-1
GGTGGGAACAAGTTGACCAT
TGG





921
2461
-1
GTGACGCCCCAGTCGTCGGT
GGG





922
2462
-1
AGTGACGCCCCAGTCGTCGG
TGG





923
2464
 1
AACTTGTTCCCACCGACGAC
TGG





924
2465
 1
ACTTGTTCCCACCGACGACT
GGG





925
2465
-1
AGGAGTGACGCCCCAGTCGT
CGG





926
2466
 1
CTTGTTCCCACCGACGACTG
GGG





927
2485
-1
GCGCCGTGCTGGAGGGAGTG
AGG





928
2492
-1
GTAAAAAGCGCCGTGCTGGA
GGG





929
2493
 1
ACTCCTCACTCCCTCCAGCA
CGG





930
2493
-1
AGTAAAAAGCGCCGTGCTGG
AGG





931
2496
-1
GATAGTAAAAAGCGCCGTGC
TGG





932
2515
 1
GCGCTTTTTACTATCTTATC
TGG





933
2537
-1
ACGTAAATAATGGTGTGAAA
AGG





934
2547
-1
AAAAAGATTTACGTAAATAA
TGG





935
2579
 1
TTATTTGATTATAATATTTG
TGG
















TABLE 5







gRNA (guide RNA) sequences and complementing PAMs (protospacer


adjacent motif) of CsSFT1 (referred to as SEQ ID NOs: 939-1014


in the seq.listing file).











Seq#
Position
Strand
Sequence
PAM





 939
1697
-1
TGTAGAGAGAGATCAGAAGA
GGG





 940
1698
-1
ATGTAGAGAGAGATCAGAAG
AGG





 941
1742
 1
ATAGTTGTTATATATATAAA
TGG





 942
1750
 1
TATATATATAAATGGCTAAT
AGG





 943
1751
 1
ATATATATAAATGGCTAATA
GGG





 944
1763
 1
GGCTAATAGGGATCCTCTTG
TGG





 945
1765
-1
ATCACTCTCCCAACCACAAG
AGG





 946
1767
 1
AATAGGGATCCTCTTGTGGT
TGG





 947
1768
 1
ATAGGGATCCTCTTGTGGTT
GGG





 948
1790
 1
GAGAGTGATAAGTGATGTGT
TGG





 949
1803
-1
GAGACACAGTTTTTGTGAAA
GGG





 950
1804
-1
AGAGACACAGTTTTTGTGAA
AGG





 951
1833
 1
TCTCTTAAAGTATCATATAG
TGG





 952
1834
 1
CTCTTAAAGTATCATATAGT
GGG





 953
1840
 1
AAGTATCATATAGTGGGAAT
AGG





 954
1841
 1
AGTATCATATAGTGGGAATA
GGG





 955
1854
 1
GGGAATAGGGCTATTAACAA
TGG





 956
1872
-1
TAGCAACTTGAGAAGGTCTA
AGG





 957
1879
-1
GGTGAGTTAGCAACTTGAGA
AGG





 958
1894
 1
CTCAAGTTGCTAACTCACCT
AGG





 959
1895
 1
TCAAGTTGCTAACTCACCTA
GGG





 960
1900
-1
TCTCCACCAATCTCAACCCT
AGG





 961
1905
 1
AACTCACCTAGGGTTGAGAT
TGG





 962
1908
 1
TCACCTAGGGTTGAGATTGG
TGG





 963
1921
 1
AGATTGGTGGAGATGATCTC
AGG





 964
1937
 1
TCTCAGGACTTTCTACACTT
TGG





 965
2020
 1
ATTAATACTGTTAATGTTGC
AGG





 966
2026
 1
ACTGTTAATGTTGCAGGTTA
TGG





 967
2043
-1
TCGCTAGGGTTAGGAGCATC
AGG





 968
2052
-1
AGATTAGGTTCGCTAGGGTT
AGG





 969
2057
-1
CTTTAAGATTAGGTTCGCTA
GGG





 970
2058
-1
TCTTTAAGATTAGGTTCGCT
AGG





 971
2067
-1
TGCAAATATTCTTTAAGATT
AGG





 972
2082
 1
ATCTTAAAGAATATTTGCAT
TGG





 973
2154
 1
AACTTTTAGATATATTACTT
AGG





 974
2164
 1
TATATTACTTAGGAATCACA
AGG





 975
2178
-1
TAGTGGCACACACTTATTGA
TGG





 976
2195
-1
TAAAAATTAATAATTATTAG
TGG





 977
2255
 1
TTAAAGTGTATAATTTTGTC
AGG





 978
2259
 1
AGTGTATAATTTTGTCAGGT
TGG





 979
2282
-1
AAGCCTGTTCCCGTAGTTGC
GGG





 980
2283
 1
GACTGATATTCCCGCAACTA
CGG





 981
2283
-1
AAAGCCTGTTCCCGTAGTTG
CGG





 982
2284
 1
ACTGATATTCCCGCAACTAC
GGG





 983
2290
 1
ATTCCCGCAACTACGGGAAC
AGG





 984
2296
 1
GCAACTACGGGAACAGGCTT
TGG





 985
2386
-1
TTAACTTACCATTAACTTAT
TGG





 986
2389
 1
AAATAACACCAATAAGTTAA
TGG





 987
2492
 1
TGTGTGTGATGATTTAATGA
TGG





 988
2493
 1
GTGTGTGATGATTTAATGAT
GGG





 989
2511
 1
ATGGGCGTACGCATATATGT
AGG





 990
2547
-1
GAATTCCCACCGTCGGTCTT
GGG





 991
2548
-1
TGAATTCCCACCGTCGGTCT
TGG





 992
2549
 1
CTACGAGAGCCCAAGACCGA
CGG





 993
2552
 1
CGAGAGCCCAAGACCGACGG
TGG





 994
2553
 1
GAGAGCCCAAGACCGACGGT
GGG





 995
2554
-1
AAGCGATGAATTCCCACCGT
CGG





 996
2592
 1
TTTGTTCTGTTTCGACAGTT
AGG





 997
2596
 1
TTCTGTTTCGACAGTTAGGA
AGG





 998
2616
 1
AGGCAGACAGTGTATGCACC
CGG





 999
2617
 1
GGCAGACAGTGTATGCACCC
GGG





1000
2620
 1
AGACAGTGTATGCACCCGGG
TGG





1001
2623
-1
TTGAAGTTATGTCGCCACCC
GGG





1002
2624
-1
GTTGAAGTTATGTCGCCACC
CGG





1003
2667
 1
TTTGCTGAAATCTACAACCT
TGG





1004
2673
-1
CGGCAGCAACAGGCAATCCA
AGG





1005
2683
-1
TTGAAGTAAACGGCAGCAAC
AGG





1006
2693
-1
CTTTTGGCAGTTGAAGTAAA
CGG





1007
2705
 1
CGTTTACTTCAACTGCCAAA
AGG





1008
2709
-1
CACCACAGCCAAGTTCCTTT
TGG





1009
2712
 1
TTCAACTGCCAAAAGGAACT
TGG





1010
2718
 1
TGCCAAAAGGAACTTGGCTG
TGG





1011
2721
 1
CAAAAGGAACTTGGCTGTGG
TGG





1012
2725
 1
AGGAACTTGGCTGTGGTGGA
AGG





1013
2728
 1
AACTTGGCTGTGGTGGAAGG
AGG





1014
2798
-1
GACATATATAGATAGATAGA
TGG
















TABLE 6







gRNA (guide RNA) sequences and complementing PAMs (protospacer


adjacent motif) of CsSFT2 (referred to as SEQ ID NOs: 1018-1105


in the seq.listing file).











Seq#
Position
Strand
Sequence
PAM





1018
 910
 1
CAATATAATAATATGACATA
TGG





1019
 926
 1
CATATGGATAGATAGATAGA
TGG





1020
 986
-1
AACTTGGCTGTGGTGGAAGG
AGG





1021
 989
-1
AGGAACTTGGCTGTGGTGGA
AGG





1022
 993
-1
CAAAAGGAACTTGGCTGTGG
TGG





1023
 996
-1
TGCCAAAAGGAACTTGGCTG
TGG





1024
1002
-1
TTCAACTGCCAAAAGGAACT
TGG





1025
1005
 1
CACCACAGCCAAGTTCCTTT
TGG





1026
1009
-1
CGTTTACTTCAACTGCCAAA
AGG





1027
1031
 1
TTGAAGTAAACGACAGCAAC
AGG





1028
1041
 1
CGACAGCAACAGGCAATCCA
AGG





1029
1047
-1
TTTGCTGAGATCTACAACCT
TGG





1030
1091
 1
TTGAAGTTATGTCGCCACCC
AGG





1031
1094
-1
AGACAGTGTATGCACCTGGG
TGG





1032
1097
-1
GGCAGACAGTGTATGCACCT
GGG





1033
1098
-1
AGGCAGACAGTGTATGCACC
TGG





1034
1118
-1
TTCTGTTTCGACAGTTAGGA
AGG





1035
1122
-1
TTTGTTCTGTTTCGACAGTT
AGG





1036
1160
 1
TAGCGATGTATTCCCACCGT
CGG





1037
1161
-1
GAGAGCCCTAGACCGACGGT
GGG





1038
1162
-1
CGAGAGCCCTAGACCGACGG
TGG





1039
1165
-1
CTACGAGAGCCCTAGACCGA
CGG





1040
1166
 1
TGTATTCCCACCGTCGGTCT
AGG





1041
1167
 1
GTATTCCCACCGTCGGTCTA
GGG





1042
1203
-1
GTGTATATACGCATATATGT
AGG





1043
1346
 1
TTAACTTATCGTTAACTTAT
TGG





1044
1431
 1
AGTGTATTAATATGTACCAA
AGG





1045
1436
-1
GCAACTACGGGAACAGCCTT
TGG





1046
1448
-1
ACTGATATTCCCGCAACTAC
GGG





1047
1449
 1
AAAGGCTGTTCCCGTAGTTG
CGG





1048
1449
-1
GACTGATATTCCCGCAACTA
CGG





1049
1450
 1
AAGGCTGTTCCCGTAGTTGC
GGG





1050
1473
-1
AGTGTATAACTTTTTCAGGT
TGG





1051
1477
-1
TTTAAGTGTATAACTTTTTC
AGG





1052
1532
 1
ATAAAATTAATAATTATTAG
TGG





1053
1548
 1
TTAGTGGCACACACTATTGA
TGG





1054
1562
-1
AATATTACTAACGAATGACA
AGG





1055
1612
-1
TGTACTTAGTAATATCATTT
CGG





1056
1637
-1
ATCTTAAAGAATATTTGCAT
TGG





1057
1652
 1
TGCAAATATTCTTTAAGATT
AGG





1058
1661
 1
TCTTTAAGATTAGGTTCGCT
AGG





1059
1662
 1
CTTTAAGATTAGGTTCGCTA
GGG





1060
1667
 1
AGATTAGGTTCGCTAGGGTT
AGG





1061
1692
-1
ACTGTTAATGTTGCAGGTTA
TGG





1062
1698
-1
ATTAATACTGTTAATGTTGC
AGG





1063
1818
 1
CGTATACTTAATTTTATGCT
AGG





1064
1959
 1
TATTTGTGCAATTATAAGTT
AGG





1065
1971
-1
GTCAAAGACCCACAACAATA
AGG





1066
1973
 1
TAAGTTAGGCCTTATTGTTG
TGG





1067
1974
 1
AAGTTAGGCCTTATTGTTGT
GGG





1068
2030
 1
TTAACAGTGTTAATTTTAAA
CGG





1069
2175
-1
TTGGTTTATGAAAAATTAGT
GGG





1070
2176
-1
CTTGGTTTATGAAAAATTAG
TGG





1071
2194
-1
TGCCTATATAACTAAATTCT
TGG





1072
2203
 1
AACCAAGAATTTAGTTATAT
AGG





1073
2253
-1
TCTCAGGACTTTCTACACTT
TGG





1074
2269
-1
AGATTGGTGGAGATGATCTC
AGG





1075
2282
-1
TCACCTAGGGTTGAGATTGG
TGG





1076
2285
-1
AACTCACCTAGGGTTGAGAT
TGG





1077
2290
 1
TCTCCACCAATCTCAACCCT
AGG





1078
2295
-1
TCAAGTTGCTAACTCACCTA
GGG





1079
2296
-1
CTCAAGTTGCTAACTCACCT
AGG





1080
2311
 1
GGTGAGTTAGCAACTTGAGA
AGG





1081
2318
 1
TAGCAACTTGAGAAGGTCTA
AGG





1082
2336
-1
GGGATTAGGGCTATTAACAA
TGG





1083
2349
-1
AGTATCATATAGTGGGATTA
GGG





1084
2350
-1
AAGTATCATATAGTGGGATT
AGG





1085
2356
-1
CTCTTAAAGTATCATATAGT
GGG





1086
2357
-1
TCTCTTAAAGTATCATATAG
TGG





1087
2386
 1
AGAGAGACAGTTTTTGTGAA
AGG





1088
2387
 1
GAGAGACAGTTTTTGTGAAA
GGG





1089
2400
-1
GAGAGTGATAAGTGATGTGT
TGG





1090
2422
-1
ATAGGGATCCTCTTGTGGTT
GGG





1091
2423
-1
AATAGGGATCCTCTTGTGGT
TGG





1092
2425
 1
ATCACTCTCCCAACCACAAG
AGG





1093
2427
-1
GGCTAATAGGGATCCTCTTG
TGG





1094
2439
-1
ATATATATAAATGGCTAATA
GGG





1095
2440
-1
TATATATATAAATGGCTAAT
AGG





1096
2448
-1
ATAGTTGTTATATATATAAA
TGG





1097
2499
 1
AGAGAGATAGAGAGAAGAA
AGG





G






1098
2500
 1
GAGAGATAGAGAGAAGAAG
GGG





A






1099
2516
 1
AAGAGGGTTTGATGAGTTTT
TGG





1100
2529
 1
GAGTTTTTGGTTGTATAATT
TGG





1101
2532
 1
TTTTTGGTTGTATAATTTGG
TGG





1102
2553
 1
GGCTGACATTCAACAATTTA
TGG





1103
2609
 1
TTAGCTTTTGTAACATCAAA
AGG





1104
2627
 1
AAAGGTTCTAATATATATTG
TGG





1105
2684
 1
TTTATATATTCTTGTAACAA
TGG
















TABLE 7







gRNA (guide RNA) sequences and complementing PAMs (protospacer


adjacent motif) of CsSFT3 (referred to as SEQ ID NOs: 1109-1334


in the seq.listing file).











Seq#
Position
strand
Sequence
PAM





1109
 364
-1
TTACTCTACCAACCACAAGA
GGG





1110
 365
-1
ATTACTCTACCAACCACAAG
AGG





1111
 367
 1
GATAGGGACCCTCTTGTGGT
TGG





1112
 379
 1
CTTGTGGTTGGTAGAGTAAT
AGG





1113
 390
 1
TAGAGTAATAGGAGATGTTT
TGG





1114
 404
 1
ATGTTTTGGATCCTTTTACA
AGG





1115
 404
-1
AGAGAGACTGACCTTGTAAA
AGG





1116
 430
 1
GTCTCTCTTAGAGTGAGTTA
TGG





1117
 441
 1
AGTGAGTTATGGTAATAGAG
AGG





1118
 451
 1
GGTAATAGAGAGGTCAACAA
TGG





1119
 476
-1
GGTTGGTTAACAATTTGGGA
AGG





1120
 480
-1
ACGAGGTTGGTTAACAATTT
GGG





1121
 481
-1
CACGAGGTTGGTTAACAATT
TGG





1122
 493
-1
CACCAATATCAACACGAGGT
TGG





1123
 497
-1
TCACCACCAATATCAACACG
AGG





1124
 502
 1
AACCAACCTCGTGTTGATAT
TGG





1125
 505
 1
CAACCTCGTGTTGATATTGG
TGG





1126
 518
 1
ATATTGGTGGTGATGACCTA
AGG





1127
 523
-1
CCAAAGTGTAGAAGGTCCTT
AGG





1128
 531
-1
TTAATTTACCAAAGTGTAGA
AGG





1129
 534
 1
CCTAAGGACCTTCTACACTT
TGG





1130
 569
-1
TGAAATCATTATGAATATTG
AGG





1131
 648
 1
CATATATTGAAAATTATTAC
AGG





1132
 654
 1
TTGAAAATTATTACAGGTCA
TGG





1133
 657
 1
AAAATTATTACAGGTCATGG
TGG





1134
 663
 1
ATTACAGGTCATGGTGGATC
CGG





1135
 671
-1
TTGCTAGGGCTAGGAGCATC
CGG





1136
 680
-1
AGATTGGGGTTGCTAGGGCT
AGG





1137
 685
-1
CCCTTAGATTGGGGTTGCTA
GGG





1138
 686
-1
TCCCTTAGATTGGGGTTGCT
AGG





1139
 694
-1
GCAAATACTCCCTTAGATTG
GGG





1140
 695
 1
GCCCTAGCAACCCCAATCTA
AGG





1141
 695
-1
TGCAAATACTCCCTTAGATT
GGG





1142
 696
 1
CCCTAGCAACCCCAATCTAA
GGG





1143
 696
-1
ATGCAAATACTCCCTTAGAT
TGG





1144
 710
 1
ATCTAAGGGAGTATTTGCAT
TGG





1145
 768
 1
ATATTATTATTAAATAGATG
AGG





1146
 769
 1
TATTATTATTAAATAGATGA
GGG





1147
 901
 1
TTTAATTTTGTATAAAACTT
TGG





1148
1020
-1
TTCATGCACACAACACATGT
TGG





1149
1081
-1
CAAAAAGTAAAGACATATTT
TGG





1150
1093
 1
CAAAATATGTCTTTACTTTT
TGG





1151
1128
 1
CATTTTATAAAGATGTTAGT
TGG





1152
1129
 1
ATTTTATAAAGATGTTAGTT
GGG





1153
1317
 1
TTTTAGTGTCAGTTTTGAAT
TGG





1154
1335
-1
ACAAAATTCTGTAATTATTA
GGG





1155
1336
-1
TACAAAATTCTGTAATTATT
AGG





1156
1368
-1
ACAAATTAAAACAAGCTTTA
GGG





1157
1369
-1
AACAAATTAAAACAAGCTTT
AGG





1158
1392
 1
TTTAATTTGTTAAAGTGACT
AGG





1159
1440
-1
AACATGTAAAAAGAATTTAA
GGG





1160
1441
-1
AAACATGTAAAAAGAATTTA
AGG





1161
1470
-1
GCTAGCATATATGGAATTTG
TGG





1162
1479
-1
ATTTATATAGCTAGCATATA
TGG





1163
1500
 1
TAGCTATATAAATATAAATA
TGG





1164
1505
 1
ATATAAATATAAATATGGAA
AGG





1165
1513
 1
ATAAATATGGAAAGGATATA
TGG





1166
1514
 1
TAAATATGGAAAGGATATAT
GGG





1167
1563
 1
AAAGCTGATGAGAAAGAATG
TGG





1168
1568
 1
TGATGAGAAAGAATGTGGTT
TGG





1169
1569
 1
GATGAGAAAGAATGTGGTTT
GGG





1170
1570
 1
ATGAGAAAGAATGTGGTTTG
GGG





1171
1591
 1
GGATGAATTTTGAATGATGA
AGG





1172
1592
 1
GATGAATTTTGAATGATGAA
GGG





1173
1598
 1
TTTTGAATGATGAAGGGATG
AGG





1174
1610
 1
AAGGGATGAGGCTGTGTGTG
TGG





1175
1633
-1
GGGACATGCTATAGCTAGCA
GGG





1176
1634
-1
GGGGACATGCTATAGCTAGC
AGG





1177
1653
-1
TTTTAATGGTGGGACAAAAG
GGG





1178
1654
-1
ATTTTAATGGTGGGACAAAA
GGG





1179
1655
-1
CATTTTAATGGTGGGACAAA
AGG





1180
1663
-1
GAGGTGGCCATTTTAATGGT
GGG





1181
1664
-1
TGAGGTGGCCATTTTAATGG
TGG





1182
1667
 1
CTTTTGTCCCACCATTAAAA
TGG





1183
1667
-1
GTGTGAGGTGGCCATTTTAA
TGG





1184
1679
-1
AAAACCTTCTTAGTGTGAGG
TGG





1185
1682
-1
GTGAAAACCTTCTTAGTGTG
AGG





1186
1686
 1
ATGGCCACCTCACACTAAGA
AGG





1187
1755
 1
ATATATACATACACATGTAT
AGG





1188
1756
 1
TATATACATACACATGTATA
GGG





1189
1824
-1
CTATGTTCGAATTCAAATTC
GGG





1190
1825
-1
TCTATGTTCGAATTCAAATT
CGG





1191
1847
 1
TTCGAACATAGACTCAGATT
TGG





1192
1860
-1
AGGGTTCAGGGTCGAATTTA
GGG





1193
1861
-1
CAGGGTTCAGGGTCGAATTT
AGG





1194
1872
-1
AGTTCGTGTTTCAGGGTTCA
GGG





1195
1873
-1
AAGTTCGTGTTTCAGGGTTC
AGG





1196
1879
-1
GAGTCTAAGTTCGTGTTTCA
GGG





1197
1880
-1
TGAGTCTAAGTTCGTGTTTC
AGG





1198
1898
 1
CACGAACTTAGACTCAGACC
TGG





1199
1904
 1
CTTAGACTCAGACCTGGACC
TGG





1200
1905
-1
TTGGGTCAAGGTCCAGGTCC
AGG





1201
1911
-1
CGGGGTTTGGGTCAAGGTCC
AGG





1202
1917
-1
TCGGGTCGGGGTTTGGGTCA
AGG





1203
1923
-1
CGGGGTTCGGGTCGGGGTTT
GGG





1204
1924
-1
TCGGGGTTCGGGTCGGGGTT
TGG





1205
1929
-1
TCGAGTCGGGGTTCGGGTCG
GGG





1206
1930
-1
TTCGAGTCGGGGTTCGGGTC
GGG





1207
1931
-1
GTTCGAGTCGGGGTTCGGGT
CGG





1208
1935
-1
CGGGGTTCGAGTCGGGGTTC
GGG





1209
1936
-1
TCGGGGTTCGAGTCGGGGTT
CGG





1210
1941
-1
TAGTTTCGGGGTTCGAGTCG
GGG





1211
1942
-1
CTAGTTTCGGGGTTCGAGTC
GGG





1212
1943
-1
TCTAGTTTCGGGGTTCGAGT
CGG





1213
1953
-1
CCAGGTCCAGTCTAGTTTCG
GGG





1214
1954
-1
TCCAGGTCCAGTCTAGTTTC
GGG





1215
1955
-1
GTCCAGGTCCAGTCTAGTTT
CGG





1216
1958
 1
CTCGAACCCCGAAACTAGAC
TGG





1217
1964
 1
CCCCGAAACTAGACTGGACC
TGG





1218
1971
 1
ACTAGACTGGACCTGGACTC
TGG





1219
1971
-1
TAGGTCCTAGGCCAGAGTCC
AGG





1220
1977
 1
CTGGACCTGGACTCTGGCCT
AGG





1221
1983
-1
CTAGACCCGAGCTAGGTCCT
AGG





1222
1988
 1
CTCTGGCCTAGGACCTAGCT
CGG





1223
1989
 1
TCTGGCCTAGGACCTAGCTC
GGG





1224
1990
-1
CTGAACTCTAGACCCGAGCT
AGG





1225
2002
 1
CTAGCTCGGGTCTAGAGTTC
AGG





1226
2012
 1
TCTAGAGTTCAGGTCCAGTC
CGG





1227
2013
 1
CTAGAGTTCAGGTCCAGTCC
GGG





1228
2014
 1
TAGAGTTCAGGTCCAGTCCG
GGG





1229
2015
-1
CCTGACCTCGGACCCCGGAC
TGG





1230
2020
-1
CAGATCCTGACCTCGGACCC
CGG





1231
2021
 1
CAGGTCCAGTCCGGGGTCCG
AGG





1232
2026
 1
CCAGTCCGGGGTCCGAGGTC
AGG





1233
2027
-1
ACGAACCCAGATCCTGACCT
CGG





1234
2032
 1
CGGGGTCCGAGGTCAGGATC
TGG





1235
2033
 1
GGGGTCCGAGGTCAGGATCT
GGG





1236
2045
 1
CAGGATCTGGGTTCGTGTTC
TGG





1237
2046
 1
AGGATCTGGGTTCGTGTTCT
GGG





1238
2047
 1
GGATCTGGGTTCGTGTTCTG
GGG





1239
2053
 1
GGGTTCGTGTTCTGGGGTTC
AGG





1240
2057
 1
TCGTGTTCTGGGGTTCAGGT
TGG





1241
2058
 1
CGTGTTCTGGGGTTCAGGTT
GGG





1242
2062
 1
TTCTGGGGTTCAGGTTGGGT
TGG





1243
2063
 1
TCTGGGGTTCAGGTTGGGTT
GGG





1244
2068
 1
GGTTCAGGTTGGGTTGGGTC
TGG





1245
2075
 1
GTTGGGTTGGGTCTGGAGTC
TGG





1246
2076
 1
TTGGGTTGGGTCTGGAGTCT
GGG





1247
2082
 1
TGGGTCTGGAGTCTGGGTCT
AGG





1248
2083
 1
GGGTCTGGAGTCTGGGTCTA
GGG





1249
2095
 1
TGGGTCTAGGGTCCAGATTC
AGG





1250
2096
-1
CCTGAACCCGATCCTGAATC
TGG





1251
2100
 1
CTAGGGTCCAGATTCAGGAT
CGG





1252
2101
 1
TAGGGTCCAGATTCAGGATC
GGG





1253
2107
 1
CCAGATTCAGGATCGGGTTC
AGG





1254
2113
 1
TCAGGATCGGGTTCAGGTTA
AGG





1255
2131
 1
TAAGGTTTGAGTCTGAGTCC
AGG





1256
2137
 1
TTGAGTCTGAGTCCAGGTAT
AGG





1257
2138
-1
TCCCGACCAGAACCTATACC
TGG





1258
2143
 1
CTGAGTCCAGGTATAGGTTC
TGG





1259
2147
 1
GTCCAGGTATAGGTTCTGGT
CGG





1260
2148
 1
TCCAGGTATAGGTTCTGGTC
GGG





1261
2176
 1
AGTTCGAGAGTTTGAATTCA
AGG





1262
2186
 1
TTTGAATTCAAGGTCCAATT
TGG





1263
2189
-1
GAACTCATCCAACTCCAAAT
TGG





1264
2192
 1
TTCAAGGTCCAATTTGGAGT
TGG





1265
2209
 1
AGTTGGATGAGTTCATGTCA
TGG





1266
2275
-1
TTTAAAATTTTAATAGTGTT
TGG





1267
2391
 1
ATTCATAATTTTTAAATTAG
AGG





1268
2392
 1
TTCATAATTTTTAAATTAGA
GGG





1269
2408
-1
TTATTTTTATCTTACTTATA
GGG





1270
2409
-1
ATTATTTTTATCTTACTTAT
AGG





1271
2520
-1
TTTACTGTACCGAATATTCA
CGG





1272
2522
 1
TTGTAGTTACCGTGAATATT
CGG





1273
2537
 1
ATATTCGGTACAGTAAATTA
AGG





1274
2541
 1
TCGGTACAGTAAATTAAGGA
TGG





1275
2622
-1
ATATATAAAAATATAAATTG
TGG





1276
2653
 1
TATATTATTAATCTAGATAA
TGG





1277
2705
-1
ATAATTATACTATATATTAT
AGG





1278
2735
 1
TTATAATAATTATACATGTT
TGG





1279
2750
 1
ATGTTTGGCAATTTCAATTT
AGG





1280
2754
 1
TTGGCAATTTCAATTTAGGT
TGG





1281
2770
 1
AGGTTGGTGACTGATATTCC
TGG





1282
2777
-1
AAGCTTGGCCCGGTAGTTCC
AGG





1283
2779
 1
ACTGATATTCCTGGAACTAC
CGG





1284
2780
 1
CTGATATTCCTGGAACTACC
GGG





1285
2787
-1
CGGCTCACCGAAGCTTGGCC
CGG





1286
2791
 1
GGAACTACCGGGCCAAGCTT
CGG





1287
2792
-1
ATGAACGGCTCACCGAAGCT
TGG





1288
2807
-1
GTATTATTATGAAGTATGAA
CGG





1289
2878
 1
ACGCTGTAAACAAAATAGTG
CGG





1290
2980
 1
ATTAATTGTTTATTATGTGT
AGG





1291
2988
 1
TTTATTATGTGTAGGACAAG
AGG





1292
2991
 1
ATTATGTGTAGGACAAGAGG
TGG





1293
3011
 1
TGGTGTGCTACGAGAACCCG
CGG





1294
3016
-1
GAATCCCCACCGTCGGCCGC
GGG





1295
3017
-1
TGAATCCCCACCGTCGGCCG
CGG





1296
3018
 1
CTACGAGAACCCGCGGCCGA
CGG





1297
3021
 1
CGAGAACCCGCGGCCGACGG
TGG





1298
3022
 1
GAGAACCCGCGGCCGACGGT
GGG





1299
3023
 1
AGAACCCGCGGCCGACGGTG
GGG





1300
3023
-1
TACCGATGAATCCCCACCGT
CGG





1301
3032
 1
GGCCGACGGTGGGGATTCAT
CGG





1302
3053
 1
GGTATGTATTTGTGTTGTTC
CGG





1303
3060
 1
ATTTGTGTTGTTCCGGCAAT
TGG





1304
3061
 1
TTTGTGTTGTTCCGGCAATT
GGG





1305
3061
-1
CCGTTTGCCTTCCCAATTGC
CGG





1306
3065
 1
TGTTGTTCCGGCAATTGGGA
AGG





1307
3072
 1
CCGGCAATTGGGAAGGCAAA
CGG





1308
3084
 1
AAGGCAAACGGTGTTCGCGC
CGG





1309
3085
 1
AGGCAAACGGTGTTCGCGCC
GGG





1310
3086
 1
GGCAAACGGTGTTCGCGCCG
GGG





1311
3089
 1
AAACGGTGTTCGCGCCGGGG
TGG





1312
3092
-1
TTGAAGTTCTGACGCCACCC
CGG





1313
3117
-1
ATAAAGCTCAGCAAAGTCTT
TGG





1314
3136
 1
TTTGCTGAGCTTTATAACCT
TGG





1315
3142
-1
GGGCAGCAACAGGCAAACCA
AGG





1316
3152
-1
TTGTAATAAAGGGCAGCAAC
AGG





1317
3162
-1
CCTTTGGCAGTTGTAATAAA
GGG





1318
3163
-1
CCCTTTGGCAGTTGTAATAA
AGG





1319
3173
 1
CCCTTTATTACAACTGCCAA
AGG





1320
3174
 1
CCTTTATTACAACTGCCAAA
GGG





1321
3178
-1
CCCCAGATCCTGTCTCCCTT
TGG





1322
3181
 1
TACAACTGCCAAAGGGAGAC
AGG





1323
3187
 1
TGCCAAAGGGAGACAGGATC
TGG





1324
3188
 1
GCCAAAGGGAGACAGGATCT
GGG





1325
3189
 1
CCAAAGGGAGACAGGATCTG
GGG





1326
3190
 1
CAAAGGGAGACAGGATCTGG
GGG





1327
3194
 1
GGGAGACAGGATCTGGGGGA
AGG





1328
3197
 1
AGACAGGATCTGGGGGAAGG
AGG





1329
3210
-1
ATATATATATGTCTATGTGG
AGG





1330
3213
-1
TATATATATATATGTCTATG
TGG





1331
3296
 1
GATTCTTAATGATGATATCA
TGG





1332
3322
-1
AAAGCTTATTATATTAATAA
TGG





1333
3379
 1
AAGATGAAGAAGAAGAAAAC
AGG





1334
3465
 1
ATTATTGTACTTAATTCAGC
TGG
















TABLE 8







gRNA (guide RNA) sequences and complementing PAMs (protospacer


adjacent motif) of CsSPGB (referred to as SEQ ID NOs: 1338-1500


in the seq.listing file).











Seq#
Position
Strand
Sequence
PAM





1338
  93
-1
TTATATGTATAAATATCATA
TGG





1339
 108
 1
ATGATATTTATACATATAAT
TGG





1340
 120
 1
CATATAATTGGCCACACCCA
CGG





1341
 120
-1
CTACTGTAAATCCGTGGGTG
TGG





1342
 125
-1
TGTGGCTACTGTAAATCCGT
GGG





1343
 126
-1
CTGTGGCTACTGTAAATCCG
TGG





1344
 143
-1
GTATGCAAAAACTAATTCTG
TGG





1345
 239
 1
AAACACATACAAACAAACAA
AGG





1346
 242
 1
CACATACAAACAAACAAAGG
AGG





1347
 254
-1
AGGCTGGAACTTAACTTGGT
GGG





1348
 255
-1
GAGGCTGGAACTTAACTTGG
TGG





1349
 258
-1
TAAGAGGCTGGAACTTAACT
TGG





1350
 270
-1
CTTGTTATTTCCTAAGAGGC
TGG





1351
 271
 1
AAGTTAAGTTCCAGCCTCTT
AGG





1352
 274
-1
TTTCCTTGTTATTTCCTAAG
AGG





1353
 282
 1
CAGCCTCTTAGGAAATAACA
AGG





1354
 345
-1
AACATGTAAGTGGTATTTTA
AGG





1355
 355
-1
TTTATATCGAAACATGTAAG
TGG





1356
 379
-1
TGCTTTTGTTGGGGAAAGGA
AGG





1357
 383
-1
TGTATGCTTTTGTTGGGGAA
AGG





1358
 388
-1
ATATATGTATGCTTTTGTTG
GGG





1359
 389
-1
TATATATGTATGCTTTTGTT
GGG





1360
 390
-1
ATATATATGTATGCTTTTGT
TGG





1361
 443
-1
TTGTTATGACTAATGAAGAG
GGG





1362
 444
-1
GTTGTTATGACTAATGAAGA
GGG





1363
 445
-1
AGTTGTTATGACTAATGAAG
AGG





1364
 477
-1
CACTACCTTAGCTTGAGAGA
GGG





1365
 478
-1
TCACTACCTTAGCTTGAGAG
AGG





1366
 483
 1
AGAGACCCTCTCTCAAGCTA
AGG





1367
 505
 1
GTAGTGAGATATATAGTGTT
AGG





1368
 515
 1
ATATAGTGTTAGGAAAGTAA
AGG





1369
 550
 1
TATATATACTCATATTAAAA
TGG





1370
 585
 1
TCGTTGAAGACTACGCTTTT
TGG





1371
 586
 1
CGTTGAAGACTACGCTTTTT
GGG





1372
 621
-1
TGTTTTTAAGATTAATGAAG
AGG





1373
 664
-1
TTTTGCTTTCTTCTATTTTG
GGG





1374
 665
-1
ATTTTGCTTTCTTCTATTTT
GGG





1375
 666
-1
TATTTTGCTTTCTTCTATTT
TGG





1376
 727
 1
TAGTTAATACAAACTTTACC
TGG





1377
 734
-1
ACTTAGAAGAAGGCAAAACC
AGG





1378
 744
-1
AAAATGAAAGACTTAGAAGA
AGG





1379
 794
-1
ACAGGCATATACAAATGAGC
TGG





1380
 812
 1
ATTTGTATATGCCTGTAAAT
AGG





1381
 812
-1
TTTTTTTGTCACCTATTTAC
AGG





1382
 841
-1
TTCTTAGAGGGTATCTATCT
GGG





1383
 842
-1
ATTCTTAGAGGGTATCTATC
TGG





1384
 853
-1
TTTGTATTAATATTCTTAGA
GGG





1385
 854
-1
CTTTGTATTAATATTCTTAG
AGG





1386
 897
-1
GTTTAATTTGCAAAAGTACA
TGG





1387
 980
 1
ATAAGTTAATAACCCATTTG
AGG





1388
 981
-1
TTTACGTGCTTTCCTCAAAT
GGG





1389
 982
-1
ATTTACGTGCTTTCCTCAAA
TGG





1390
1015
-1
TCGATCAAGAGCTAGAAAAC
AGG





1391
1064
-1
CGGGGGACAGACGAAACAAG
AGG





1392
1081
-1
TGAAAATGGGTCAGCTTCGG
GGG





1393
1082
-1
CTGAAAATGGGTCAGCTTCG
GGG





1394
1083
-1
ACTGAAAATGGGTCAGCTTC
GGG





1395
1084
-1
AACTGAAAATGGGTCAGCTT
CGG





1396
1094
-1
AAAGGTTCCAAACTGAAAAT
GGG





1397
1095
-1
AAAAGGTTCCAAACTGAAAA
TGG





1398
1098
 1
AAGCTGACCCATTTTCAGTT
TGG





1399
1112
-1
TAAACACTTTTGGGAAGAAA
AGG





1400
1121
-1
CTTGTTTGTTAAACACTTTT
GGG





1401
1122
-1
TCTTGTTTGTTAAACACTTT
TGG





1402
1138
 1
AGTGTTTAACAAACAAGAAG
AGG





1403
1157
 1
GAGGAATCTAAAGTCTCAAA
TGG





1404
1158
 1
AGGAATCTAAAGTCTCAAAT
GGG





1405
1180
 1
GCTTGTGAAAGATGAAACAT
TGG





1406
1188
 1
AAGATGAAACATTGGAGATG
TGG





1407
1196
 1
ACATTGGAGATGTGGTTGTT
TGG





1408
1204
 1
GATGTGGTTGTTTGGATGCA
AGG





1409
1208
 1
TGGTTGTTTGGATGCAAGGA
TGG





1410
1213
 1
GTTTGGATGCAAGGATGGAT
CGG





1411
1218
 1
GATGCAAGGATGGATCGGTG
AGG





1412
1233
-1
CCTGAGTTTCCATTTCTCGA
TGG





1413
1235
 1
GTGAGGCTTCCATCGAGAAA
TGG





1414
1244
 1
CCATCGAGAAATGGAAACTC
AGG





1415
1245
 1
CATCGAGAAATGGAAACTCA
GGG





1416
1257
-1
ACAGCATTGAGCTTGAATTC
TGG





1417
1274
 1
TTCAAGCTCAATGCTGTAAG
AGG





1418
1280
 1
CTCAATGCTGTAAGAGGCTG
AGG





1419
1286
 1
GCTGTAAGAGGCTGAGGCAG
AGG





1420
1301
-1
CTCCGGACAGTACTCTGTTT
GGG





1421
1302
-1
TCTCCGGACAGTACTCTGTT
TGG





1422
1310
 1
GACCCAAACAGAGTACTGTC
CGG





1423
1316
 1
AACAGAGTACTGTCCGGAGA
CGG





1424
1318
-1
CCCTCCTCCAGCTCCGTCTC
CGG





1425
1322
 1
GTACTGTCCGGAGACGGAGC
TGG





1426
1325
 1
CTGTCCGGAGACGGAGCTGG
AGG





1427
1328
 1
TCCGGAGACGGAGCTGGAGG
AGG





1428
1329
 1
CCGGAGACGGAGCTGGAGGA
GGG





1429
1336
 1
CGGAGCTGGAGGAGGGACCA
TGG





1430
1339
 1
AGCTGGAGGAGGGACCATGG
TGG





1431
1342
-1
TGATCGACCTCCGACCACCA
TGG





1432
1343
 1
GGAGGAGGGACCATGGTGGT
CGG





1433
1346
 1
GGAGGGACCATGGTGGTCGG
AGG





1434
1363
 1
CGGAGGTCGATCAGTGCAAA
AGG





1435
1364
 1
GGAGGTCGATCAGTGCAAAA
GGG





1436
1383
 1
AGGGTCTTGCTAAAAAGTCT
TGG





1437
1398
 1
AGTCTTGGTAGATCATGTTT
CGG





1438
1405
 1
GTAGATCATGTTTCGGTAGT
TGG





1439
1410
 1
TCATGTTTCGGTAGTTGGTG
TGG





1440
1436
 1
TTATTGATGTTGTTGAGTTG
TGG





1441
1439
 1
TTGATGTTGTTGAGTTGTGG
TGG





1442
1442
 1
ATGTTGTTGAGTTGTGGTGG
TGG





1443
1445
 1
TTGTTGAGTTGTGGTGGTGG
TGG





1444
1448
 1
TTGAGTTGTGGTGGTGGTGG
TGG





1445
1514
-1
CAAAAGCCATGGAAGAAGTT
TGG





1446
1519
 1
ATCTTTCCAAACTTCTTCCA
TGG





1447
1525
-1
TCCTTCTACAACAAAAGCCA
TGG





1448
1535
 1
TCCATGGCTTTTGTTGTAGA
AGG





1449
1597
 1
AAAAGACTTCTTTGAAGAAG
AGG





1450
1620
-1
AGCTTAAGCTTACACAACAC
AGG





1451
1657
 1
ATTTCTTCTTCTTCTTCTTC
TGG





1452
1713
-1
ATACTAATGTCGTCGTCATC
AGG





1453
1735
 1
CGACATTAGTATAAGACTGA
TGG





1454
1736
 1
GACATTAGTATAAGACTGAT
GGG





1455
1822
 1
AGAGATGAGAAGAGTAGAGC
TGG





1456
1850
 1
GTAGCTACAGCTATGTATGA
AGG





1457
1888
 1
AGAGAGAGAAGAAGAAGAA
TGG





C






1458
1914
 1
ATATTGTATTGAGCCACGCG
CGG





1459
1916
-1
AAACAGTACTCTTCCGCGCG
TGG





1460
1934
 1
CGGAAGAGTACTGTTTTTAT
TGG





1461
1935
 1
GGAAGAGTACTGTTTTTATT
GGG





1462
1938
 1
AGAGTACTGTTTTTATTGGG
AGG





1463
1959
-1
CCTATAAGTCTCTTTAATTT
GGG





1464
1960
-1
CCCTATAAGTCTCTTTAATT
TGG





1465
1970
 1
CCCAAATTAAAGAGACTTAT
AGG





1466
1971
 1
CCAAATTAAAGAGACTTATA
GGG





1467
1976
 1
TTAAAGAGACTTATAGGGCC
TGG





1468
1983
-1
AAGTATACAGTTTACAGGCC
AGG





1469
1988
-1
GACTGAAGTATACAGTTTAC
AGG





1470
2010
-1
TGTGGAACAGCAGATGAGAT
TGG





1471
2028
-1
TTTAGATTCTCATAATGTTG
TGG





1472
2042
 1
CAACATTATGAGAATCTAAA
AGG





1473
2062
-1
CACTGTTAAAAAGGAGTGGT
GGG





1474
2063
-1
GCACTGTTAAAAAGGAGTGG
TGG





1475
2066
-1
GTGGCACTGTTAAAAAGGAG
TGG





1476
2071
-1
GGTTAGTGGCACTGTTAAAA
AGG





1477
2085
-1
ATATATAGGGGGATGGTTAG
TGG





1478
2092
-1
CATGTACATATATAGGGGGA
TGG





1479
2096
-1
CAAGCATGTACATATATAGG
GGG





1480
2097
-1
ACAAGCATGTACATATATAG
GGG





1481
2098
-1
TACAAGCATGTACATATATA
GGG





1482
2099
-1
CTACAAGCATGTACATATAT
AGG





1483
2163
-1
AAGACATAATGCTAAGTAAA
TGG





1484
2192
-1
TAGTCAATTAATCTTATTCA
TGG





1485
2225
 1
AATTTGCAACTACTCTCTCA
AGG





1486
2228
 1
TTGCAACTACTCTCTCAAGG
TGG





1487
2229
 1
TGCAACTACTCTCTCAAGGT
GGG





1488
2245
 1
AGGTGGGTTGTGTATTAATT
AGG





1489
2250
 1
GGTTGTGTATTAATTAGGCC
TGG





1490
2257
-1
CAATATTCCACATTCACACC
AGG





1491
2261
 1
AATTAGGCCTGGTGTGAATG
TGG





1492
2269
 1
CTGGTGTGAATGTGGAATAT
TGG





1493
2283
 1
GAATATTGGCATATATAGTA
TGG





1494
2376
 1
CTTTGTTTTGAGATTTTAAA
AGG





1495
2377
 1
TTTGTTTTGAGATTTTAAAA
GGG





1496
2392
-1
AACTTTGCCTGTTTCATTCA
TGG





1497
2396
 1
AGGGTGTCCATGAATGAAAC
AGG





1498
2416
 1
AGGCAAAGTTTGTCTTTGAC
AGG





1499
2421
 1
AAGTTTGTCTTTGACAGGAT
TGG





1500
2433
 1
GACAGGATTGGTCTGAATTT
TGG









Example 3: Modification of Multiflora Gene in Cannabis Plants

The aim of the example was to introduce a mutation in the Multiflora gene, thereby inhibiting the expression of the multiflora protein. This may potentially increase the yield of flower in cannabis plants, by causing the plant to produce more flowers.


The Multiflora gene was mutated via CRISPR/Cas-9 system. Cannabis plants were transformed using Agrobacterium tumefaciens containing a binary plasmid harboring the Cas-9 gene and a gRNA expression cassette. Plant tissue samples were collected 10-14 days post transformation and DNA was extracted. The DNA was then used to perform PCR using specific primers (Fw 5-GGCGATTCCTGTTGCGGGTT-3 Rv 5-ATGAGAGGAGTCCGGAGCCG-3) flanking relevant guide sequences after which the PCR product was analyzed by Next Generation Sequencing (NGS) to identify editing events.


Editing of the Multiflora gene was carried out by use of the gRNA set forth as SEQ ID NO 750 (also referenced in Table 4, position 624). SEQ ID NO 750 was specifically chosen for use, since it is located at the beginning of the gene, and a mutation therein will lead to a stop codon, inhibiting the protein's expression. Base pairs were inserted by random, non-homologous insertion. Amplicon sequencing was executed at 100,000 reads per sample and analyzed to identify editing events. 95% of amplicons had the original Wild Type (WT) sequence while 1.8% had an “A” insertion at the 4th position upstream to the PAM, 1.1% had an “C” insertion and 0.7% had an “T” insertion at the same position, set forth as SEQ ID Nos. 1501, 1502, and 1503, respectively.

Claims
  • 1) A method for increasing yield in Cannabis plants selected from a group consisting of C. sativa, C. indica, and C. ruderalis, comprising steps of; a) selecting a gene involved in the flowering pathways of said Cannabis species;b) synthesizing or designing a gRNA expression cassette corresponding to a targeted cleavage locus along the Cannabis genome or a complex of gRNA and a protein (Ribonucleoprotein protein complex);c) transforming said Cannabis plant cells to insert said gRNA expression cassette or said ribonucleoprotein protein complex into them;d) culturing said Cannabis plant cells;e) selecting said Cannabis cells which express desired mutations in the editing target region, andf) regenerating a plant from said plant cell, plant cell nucleus, or plant tissue.
  • 2) The method of claim 1, wherein the gene involved in the flowering pathways of said Cannabis species is selected from SEQ ID NO:1, SEQ ID NO:171, SEQ ID NO:390, SEQ ID NO:726, SEQ ID NO:936, SEQ ID NO:1015, SEQ ID NO:1106 or SEQ ID NO:1335.
  • 3) The gRNAs of claim 1 and their corresponding PAMs are selected from a group consisting of SEQ ID NOs:4-170, SEQ ID NOs:174-389, SEQ ID NOs:393-725, SEQ ID NOs: 729-935, SEQ ID NOs: 939-1014, SEQ ID NOs: 1018-1105, SEQ ID NOs: 1109-1334 and SEQ ID NOs: 1338-1500.
  • 4) The method of claim 2, wherein the target domain sequence is selected from the group comprising of: (1) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:1, (2) a nucleic acid sequence comprising the sequence of SEQ ID NO:171, (3) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:390, (4) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:726, (5) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:936, (6) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:1015, (7) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:1106, (8) a nucleic acid sequence encoding the polypeptide of SEQ ID NO:1335, (9) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:1, (10) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:171, (11) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:390, (12) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:726, (13) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:936, (14) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:1015, (15) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:1106, (16) a nucleic acid sequence having at least 80% sequence identity to at least 200 contiguous nucleotides of the nucleic acid sequence of SEQ ID NO:1335.
  • 5) The method of claim 1, wherein said transforming is executed by means selected from a group consisting of: the Agrobacterium-mediated transformation method, particle bombardment (biolistics), injection, viral transformation, in planta transformation, electroporation, lipofection, sonication, silicon carbide fiber mediated gene transfer, laser microbeam (UV) induced gene-transfer, co-cultivation with the explants tissue and any combination thereof.
  • 6) The method of claim 5, wherein the transformation is carried out using Agrobacterium to deliver an expression cassette comprised of: (a) a selection marker; (b) a nucleotide sequence encoding one or more gRNA molecules comprising a DNA sequence which is complementary with a target domain sequence selected from the group pf genes consisting of SEQ ID NO:1, SEQ ID NO:171, SEQ ID NO:390, SEQ ID NO:726, SEQ ID NO:936, SEQ ID NO:1015, SEQ ID NO:1106 and SEQ ID NO:1335, and (c) a nucleotide sequence encoding a Cas molecule from, but not limited to Streptococcus pyogenes or Staphylococcus aureus.
  • 7) The method of claim 6, wherein said method comprises administering a nucleic acid composition that comprises: (a) a first nucleotide sequence encoding the gRNA molecule; and (b) a second nucleotide sequence encoding the Cas protein.
  • 8) The method of claim 5, wherein the CRISPR/Cas system is delivered to the cell by a plant virus.
  • 9) The method of claim 7, wherein the Cas protein is selected from a group comprising but not limited to Cpf1, Cas9, Cas12, Cas13, Cas14, CasX or CasY.
  • 10) The method of claim 1, wherein increasing Cannabis yield comprising steps of (a) introducing into a Cannabis plant or a cell thereof (i) at least one RNA-guided endonuclease comprising at least one nuclear localization signal or nucleic acid encoding at least one RNA-guided endonuclease comprising at least one nuclear localization signal, (ii) at least one guide RNA or DNA encoding at least one guide RNA, and, optionally, (iii) at least one donor polynucleotide; and(b) culturing the Cannabis plant or cell thereof such that each guide RNA directs an RNA-guided endonuclease to a targeted site in the chromosomal sequence where the RNA-guided endonuclease introduces a double-stranded break in the targeted site, and the double-stranded break is repaired by a DNA repair process such that the chromosomal sequence is modified, wherein the targeted site is located in genes selected from SEQ ID NO:1, SEQ ID NO:171, SEQ ID NO:390, SEQ ID NO:726, SEQ ID NO:936, SEQ ID NO:1015, SEQ ID NO:1106 and SEQ ID NO:1335 and the chromosomal modification interrupts or interferes with transcription and/or translation of the genes selected from SEQ ID NO:1, SEQ ID NO:171, SEQ ID NO:390, SEQ ID NO:726, SEQ ID NO:936, SEQ ID NO:1015, SEQ ID NO:1106 and SEQ ID NO:1335.
  • 11) The method of claim 10, wherein the RNA-guided endonuclease is derived from a clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system.
  • 12) The method of claim 10, wherein the introduction of SEQ ID NO:1, SEQ ID NO:171, SEQ ID NO:390, SEQ ID NO:726, SEQ ID NO:936, SEQ ID NO:1015, SEQ ID NO:1106 and SEQ ID NO:1335 does not insert exogenous genetic material and produces a non-naturally occurring Cannabis plant or cell thereof.
  • 13) The method of claim 1, wherein increasing Cannabis yield comprises; (a) identifying at least one locus within a DNA sequence in a Cannabis plant or a cell thereof for SEQ ID NO:1, SEQ ID NO:171, SEQ ID NO:390, SEQ ID NO:726, SEQ ID NO:936, SEQ ID NO:1015, SEQ ID NO:1106 and SEQ ID NO:1335;(b) identifying at least one custom endonuclease recognition sequence within the at least one locus of SEQ ID NO:1, SEQ ID NO:171, SEQ ID NO:390, SEQ ID NO:726, SEQ ID NO:936, SEQ ID NO:1015, SEQ ID NO:1106 and SEQ ID NO:1335;(c) introducing into the Cannabis plant or a cell thereof at least a first custom endonuclease, wherein the Cannabis plant or a cell thereof comprises the recognition sequence for the custom endonuclease in or proximal to the loci of SEQ ID NO:1, SEQ ID NO:171, SEQ ID NO:390, SEQ ID NO:727, SEQ ID NO:937, SEQ ID NO:1016, SEQ ID NO:1107 and SEQ ID NO:1336, and the custom endonuclease is expressed transiently or stably;(d) assaying the Cannabis plant or a cell thereof for a custom endonuclease-mediated modification in the DNA making up or flanking the loci of SEQ ID NO:1, SEQ ID NO:171, SEQ ID NO:390, SEQ ID NO:727, SEQ ID NO:937, SEQ ID NO:1016, SEQ ID NO:1107 and SEQ ID NO:1336, (e) identifying the Cannabis plant, a cell thereof, or a progeny cell thereof as comprising a modification in the loci of SEQ ID NO:1, SEQ ID NO:171, SEQ ID NO:390, SEQ ID NO:727, SEQ ID NO:937, SEQ ID NO:1016, SEQ ID NO:1107 and SEQ ID NO:1336.
  • 14) The method of claim 13, wherein increasing said Cannabis yield is selected from a group consisting of: increasing the number of flowers, increasing the size of the flowers, increasing the weight of the flowers, increasing the number of buds, increasing the size of the buds, increasing the weight of the buds and any combination thereof.
  • 15) A method for increasing yield in Cannabis plants selected from a group consisting of C. sativa, C. indica, and C. ruderalis, comprising steps of; a) selecting a gene involved in the flowering pathways of said Cannabis species;b) obtaining cells of said Cannabis plants;c) editing said genes involved in the flowering pathways of said cells;d) culturing said cells;e) selecting said cells expressing desired mutations in the editing target region, andf) regenerating a Cannabis plant from said cell, plant cell nucleus, or plant tissue.
  • 16) The method of claim 15, wherein said editing is executed by means selected from a group consisting of: CRISPR/Cas, cleaving the genome of said cell using zinc finger nucleases, cleaving the genome of said cell using meganucleases (homing endonucleases), cleaving the genome of said cell using transcription activator-like effector nucleases (TALEN), and any combination thereof.
  • 17) The method of claim 15, wherein increasing said Cannabis yield is selected from a group consisting of: increasing the number of flowers, increasing the size of the flowers, increasing the weight of the flowers, increasing the number of buds, increasing the size of the buds, increasing the weight of the buds and any combination thereof.
  • 18) The method of claim 3, wherein the gRNA corresponds to a Multiflora gene.
  • 19) The method of claim 1, wherein the mutation occurs in a Multiflora gene, and the mutation is set forth as SEQ ID NOs. 1501-1503.
  • 20) A Cannabis plant produced according to claim 1.
  • 21) A seed of the Cannabis plant of claim 20.
  • 22) A mutated Cannabis plant comprising a mutation in gene Multiflora wherein the mutation of the Multiflora gene is set forth as SEQ ID NOs. 1501, 1502, or 1503.
  • 23) A seed of the mutated cannabis plant of claim 22.
CROSS REFERENCE TO RELATED APPLICATIONS

This is a Continuation in Part (CIP) of International Application No. PCT/IL2020/050683 filed Jun. 18, 2020; which in turn claims the benefit of U.S. Provisional Patent Application No. 62/863,279, filed Jun. 19, 2019. The contents of the foregoing patent applications are incorporated by reference herein in their entirety.

Provisional Applications (1)
Number Date Country
62863279 Jun 2019 US
Continuation in Parts (1)
Number Date Country
Parent PCT/IL2020/050683 Jun 2020 US
Child 17555540 US