1. Field of the Invention
Embodiments of the invention generally relate to methods for increasing the recovery of hydrocarbons from a subterranean reservoir.
2. Description of the Related Art
Oil can generally be separated into classes or grades according to its viscosity and density. Grades of oil that have a high viscosity and density may be more difficult to produce from a reservoir to the surface. In particular, extra heavy oil requires enhanced oil recovery techniques for production. In the following description, the generic term “oil” includes hydrocarbons, such as extra heavy oil, as well as less viscous grades of oil.
A large portion of the world's potential oil reserves is in the form of heavy or extra heavy oil, such as the Orinoco Belt in Venezuela, the oil sands in Canada, and the Ugnu Reservoir in Northern Alaska. Currently, some existing oil reservoirs are exploited using enhanced thermal recovery techniques or solvent-based techniques resulting in a recovery efficiency in the range of 20% to 25%. The most common thermal technique is steam injection by which heat enthalpy from the steam is transferred to the oil by condensation. The heating reduces the viscosity of the oil to allow gravity drainage and collection. Thus, oil recovery is high if the temperature can be maintained near the temperature of the injected steam. Well-known methods such as Cyclic Steam Simulation (“CSS”), Drive Well Injection (“Drive”), and Steam Assisted Gravity Drainage (“SAGD”) may be used to recover oil in the above noted potential reserves.
The CSS method utilizes a single vertical well. Steam is injected into the well from a steam generator at the surface. After allowing the reservoir to soak with the steam for a selected amount of time, the oil is then produced from the same well. When production declines, this process is simply repeated. Further, a pump may be required to pump the heated oil to the surface. If so, the pump is often removed each time the steam is injected, and then replaced after the injection.
The Drive method utilizes a vertical well, known as a drive or injector well, and a laterally spaced nearby well, known as a production well. Steam is continuously injected into the drive well from a steam generator at the surface to heat the oil in the surrounding reservoir. The steam front then drives the heated oil into the production well for production.
The SAGD method utilizes two horizontal wells, one well disposed above and parallel to the other. The upper well is known as the injector well and the lower well is known as the production well. Each well may have a slotted liner. Steam is continuously injected into the upper well to heat the oil in the surrounding reservoir. The steam, with the assistance of gravity, causes the oil to flow and drain into the lower well. The oil is then produced from the lower well to the surface.
These methods have many advantages and disadvantages. As the number of potential oil reservoirs increases and the complexity of the operating conditions of these reservoirs increases, there is a continuous need for more efficient enhanced oil recovery techniques and methods.
The invention relates to a combined steam assisted gravity drainage and drive method of producing oil from a subterranean reservoir. An embodiment includes the use of downhole steam generators or other downhole mixing devices to increase oil production. A further embodiment includes the use of excess carbon dioxide and oxygen to increase oil recovery.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
So that the manner in which the above recited aspects of the invention can be understood in detail, a more particular description of embodiments of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Embodiments of the invention generally relate to methods for increasing the recovery of oil from a reservoir. According to one embodiment, the use of a combination of a SAGD and a Drive operation, with the use of downhole steam generators (“DHSG”) or other downhole mixing devices, excess carbon dioxide, and excess oxygen is provided. As set forth herein, the invention will be described as it relates to DHSGs. It is to be noted, however, that aspects of the invention are not limited to use with DHSGs, but are equally applicable to use with other types of downhole mixing devices. To better understand the novelty of the invention and the methods of use thereof, reference is hereafter made to the accompanying drawings.
As shown in
As shown in
The DHSG is designed to generate, exhaust, and inject high temperature steam, as well as other gases, such carbon dioxide and excess oxygen, into a well. A burner disposed in the DHSG is used to combust fuel and heat fluids, such as water, that are supplied to the burner from the surface. The DHSG has the advantage of generating steam and other gases downhole rather than at the surface. This advantage may be evidenced by an example in which a formation contains a permafrost layer between the surface and the oil reservoir or the reservoir is below a cold ocean floor, and hot gases injected from the surface might melt the permafrost or gas hydrates in bottom sediments, causing them and the surrounding formation to expand and potentially collapse the drilled wells. If melting of permafrost or heat losses are not a concern, then the several fluids discussed can be mixed in a downhole mixing device such as a static mixer.
Carbon dioxide can be a very beneficial additive to steam when injected into an oil reservoir. High concentrations of carbon dioxide can accelerate initial oil production from a SAGD operation and can help produce oil faster in a SAGD or Drive operation. Carbon dioxide may also be used to cool the burner in the DHSG. Finally, depending on the conditions of an oil reservoir, carbon dioxide in a liquid state is very soluble in lower temperature oil.
Oxygen is also a very beneficial additive to some thermal enhanced oil recovery operations. Excess oxygen may combust any hot residual oil near the DHSG and may eliminate any carbon monoxide, which is not very soluble in oil, generate carbon dioxide, which is very soluble in cooler oil, and prevent coke generation that can plug the formation. In addition, the oxygen may generate extra energy from combustion of oil in the reservoir and steam from water in the reservoir.
To begin, one example of a combined SAGD/Drive/DHSG operation will be described. The SAGD section has a horizontal injector well and a horizontal production well disposed below the injector well, and the Drive section has a horizontal injector well laterally spaced apart from the SAGD wells. The combined operation may start with injecting steam into the SAGD injector well via a first DHSG. In an alternative embodiment, the combined operation may start with injecting carbon dioxide into the SAGD injector well via the first DHSG. In an alternative embodiment, oxygen may be injected into the SAGD injector well with steam and/or carbon dioxide. Since carbon dioxide may be rapidly produced by oxidation of oil in the reservoir and by extraction from other gases in the reservoir, it can be recycled and little additional carbon dioxide may be needed. Also, the recycled carbon dioxide can collect significant quantities of natural gas from the reservoir, as well as carbon monoxide and hydrogen generated by reactions in the reservoir. This recycled gas mixture may be utilized as a fuel for the DHSG and may supply a significant amount of the energy needed for the entire operation. Production from the SAGD production well may begin after injection into the SAGD injector well. After a first selected amount of time, a second DHSG may be started at the Drive injector well by which steam is injected. In an alternative embodiment, carbon dioxide is injected into the Drive injector well. In an alternative embodiment, carbon dioxide is injected into the Drive injector well with steam. The injected carbon dioxide may move ahead of a thermal front created by the steam and reduce the oil's viscosity in the reservoir before the steam heats the oil. Thus, the oil's viscosity is reduced by both heating and dilution. In an alternative embodiment, oxygen may be injected into the Drive injector well with the steam and/or the carbon dioxide. When the steam, and if added, the carbon dioxide and/or oxygen, from the Drive injector well establishes fluid communication with the SAGD production well, the SAGD injector well selectively may be shut in. In one embodiment, the SAGD injector well may be shut in when the pressure in the SAGD injector well reaches a particular threshold, such as the initial injection pressure of the SAGD injector well (further discussed below), after fluid from the Drive injector well establishes fluid communication with the SAGD production well. Once injection into the SAGD injector well ceases, the Drive injector well may continue to operate until the SOR reaches a particular threshold, such as an incremental 5:1 ratio. Depending on the conditions of the reservoir, the carbon dioxide may be in a liquid state, which is very soluble in lower temperature oil. Under this combined method, the SAGD/Drive/DHSG operation is capable of producing more oil and accelerating initial production rates more than other methods.
An alternative embodiment of the combined SAGD/Drive/DHSG operation will be described. A first fluid may be injected into the SAGD injector well via a DHSG. The SAGD injector well may include an initial injection pressure. In one embodiment, the initial injection pressure is 1500 pounds per square inch (psi). Production from the SAGD production well may commence after injection into the SAGD injector well. The SAGD production well comprises a volume and pressure limit, wherein the volume helps maintain the production pressure in the SAGD production well. In one embodiment, the SAGD production well has a bottom-hole production pressure of 800 psi. A second fluid may be injected into the Drive injector well via a DHSG. The Drive injector well may also include an initial injection pressure. In one embodiment, the Drive injector well initial injection pressure is 1750 psi. As production from the SAGD production well continues, the bottom-hole pressure in the SAGD injector well may decrease until it reaches the production pressure limit in the SAGD production well. After fluid communication is established between the Drive injector well and the SAGD production well, the bottom-hole pressure in the SAGD injector well may be increased by the initial injection pressure from the Drive injector well since the volume of liquids produced from the SAGD producer is limited. The SAGD injector well selectively may be shut in when the bottom-hole pressure in the SAGD injector well is increased back to its initial injection pressure. In an alternative embodiment, the SAGD injector well selectively may be shut in when the bottom-hole pressure in the SAGD injector well is increased above its initial injection pressure. Finally, the bottom-hole pressure in the Drive injector well may eventually decrease to the production pressure limit in the SAGD production well. The first and second fluids may comprise steam, carbon dioxide, oxygen, or combinations thereof.
In one embodiment, a method for increasing the recovery of hydrocarbons from a subterranean reservoir may include two SAGD operations and a Drive operation. The SAGD operations may be laterally spaced apart and each of the operations include a SAGD injector well and a SAGD production well. A fluid may be injected into a first SAGD injector well. The production of hydrocarbons may begin from a first SAGD production well disposed below the first injector well. A second fluid may be injected into a second SAGD injector well. The production of hydrocarbons may begin from a second SAGD production well disposed below the second injector well. Steam may be injected into a Drive well laterally offset from and disposed between the SAGD operations, while continuing to produce hydrocarbons from the production wells. The injection into the SAGD injector wells may cease when the steam from the Drive well reaches each of the production wells, respectively. The first and second fluids may comprise steam, carbon dioxide, oxygen, or combinations thereof. DHSGs may be disposed in each of the SAGD injector wells and the Drive well. In an alternative embodiment, carbon dioxide and/or oxygen may be injected into the Drive well with the steam. In an alternative embodiment, carbon dioxide and/or steam may be generated downhole (with a DHSG) in the SAGD injector wells and the Drive well.
In an alternative embodiment, a method for increasing the recovery of hydrocarbons from a subterranean reservoir may include injecting the first fluid into the first SAGD injector well via the DHSG at a first initial injection pressure. The second fluid may be injected into the second SAGD injector well via the DHSG at a second initial injection pressure. Production from the first and second SAGD production wells may begin at a first and second production pressure, respectively. The wellhead pressures of the SAGD injector wells may decrease to the production pressures of the relative SAGD production well. A third fluid may be injected into the Drive injector well at a third initial injection pressure. In one embodiment, after fluid communication is established between the Drive injector well and the first SAGD production well, the first SAGD injector well selectively may be shut in because it is no longer needed. In an alternative embodiment, after fluid communication is established between the Drive injector well and each of the SAGD production wells, each of the relative SAGD injector wells selectively may be shut in. The first or second SAGD injector well may be shut in when the wellhead pressure in the first or second SAGD injector well is greater than or equal to its initial injection pressure, respectively. The first, second, and third fluid may comprise steam, carbon dioxide, oxygen, or combinations thereof.
From the examples cited above, it is shown that production from a SAGD/Drive operation can be accelerated with excess carbon dioxide and oxygen. As a result, the well spacing between the SAGD wells and the SAGD/Drive wells may be increased, thus requiring fewer drilled wells. The excess carbon dioxide is beneficial because it is very soluble in unheated oil. The solubility of carbon dioxide in oil may be even higher if the temperature of the oil is less than 80 degrees Fahrenheit and the pressure in the reservoir is maintained above 800 psi. Under these operating conditions, the carbon dioxide is a dense liquid that is very soluble in oil and performs as supercritical carbon dioxide does at higher pressures and temperatures. In addition, the excess oxygen is also beneficial because it helps eliminate carbon monoxide and generate carbon dioxide, provides extra steam, and prevents coke formation.
While the foregoing is directed to embodiments of the invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
3794113 | Strange | Feb 1974 | A |
4271905 | Redford et al. | Jun 1981 | A |
4410042 | Shu | Oct 1983 | A |
4565249 | Pebdani et al. | Jan 1986 | A |
4574884 | Schmidt | Mar 1986 | A |
4627493 | Alameddine | Dec 1986 | A |
4699213 | Fleming | Oct 1987 | A |
5055030 | Schirmer | Oct 1991 | A |
5255742 | Mikus | Oct 1993 | A |
5273111 | Brannan et al. | Dec 1993 | A |
5404952 | Vinegar et al. | Apr 1995 | A |
5488990 | Wadleigh et al. | Feb 1996 | A |
5623576 | Deans | Apr 1997 | A |
5832999 | Ellwood | Nov 1998 | A |
5862858 | Wellington et al. | Jan 1999 | A |
5899269 | Wellington et al. | May 1999 | A |
6019172 | Wellington et al. | Feb 2000 | A |
6257334 | Cyr et al. | Jul 2001 | B1 |
6269882 | Wellington et al. | Aug 2001 | B1 |
6358040 | Pfefferle et al. | Mar 2002 | B1 |
6394791 | Smith et al. | May 2002 | B2 |
6662872 | Gutek et al. | Dec 2003 | B2 |
6752623 | Smith et al. | Jun 2004 | B2 |
6973968 | Pfefferle | Dec 2005 | B2 |
7114566 | Vinegar et al. | Oct 2006 | B2 |
7341102 | Kresnyak et al. | Mar 2008 | B2 |
7343971 | Pfefferle | Mar 2008 | B2 |
7556099 | Arthur et al. | Jul 2009 | B2 |
20030000711 | Gutek et al. | Jan 2003 | A1 |
20050239661 | Pfefferle | Oct 2005 | A1 |
20060042794 | Pfefferle | Mar 2006 | A1 |
20060175061 | Crichlow | Aug 2006 | A1 |
20060260814 | Pfefferle | Nov 2006 | A1 |
20060289157 | Rao | Dec 2006 | A1 |
20070202452 | Rao | Aug 2007 | A1 |
20090145606 | Hocking | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
0 144 203 | Dec 1985 | EP |
57-92298 | Jun 1982 | JP |
57-116890 | Jul 1982 | JP |
WO 2006074554 | Jul 2006 | WO |
WO 2006074555 | Jul 2006 | WO |
WO 2009076763 | Jun 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20090272532 A1 | Nov 2009 | US |