The subject matter disclosed herein relates generally to photovoltaic (PV) modules, and more particularly to a method for increasing the working surface area of such modules.
Thin film photovoltaic (PV) modules (also referred to as “solar panels”) are gaining wide acceptance and interest in the industry. As is well known, these modules are formed by sandwiching certain types of semiconductor materials between electrode materials. Cadmium telluride (CdTe) paired with cadmium sulfide (CdS) as the photo-reactive components are particularly good materials. CdTe is a semiconductor material having characteristics particularly suited for conversion of solar energy (sunlight) to electricity. For example, CdTe has an energy bandgap of 1.45 eV, which enables it to convert more energy from the solar spectrum as compared to lower bandgap (1.1 eV) semiconductor materials historically used in solar cell applications. Also, CdTe converts energy in lower or diffuse light conditions as compared to the lower bandgap materials and, thus, has a longer effective conversion time over the course of a day or in low-light (e.g., cloudy) conditions as compared to other conventional materials.
The PV modules are conventionally formed by deposition of the various semiconductor materials and electrode layers as thin film layers (generally recognized in the art as less than 10 microns (μm)) on a glass substrate. The substrate then undergoes various processing steps, including laser scribing processes, to define and isolate individual cells, define a perimeter edge zone around the cells, connect the cells in series, and so forth. These steps result in a plurality of individual solar cells defined within the physical edges of the substrate, and in less than all of the original surface area of the substrate being utilized.
The advantages of CdTe not withstanding, sustainable commercial exploitation and acceptance of solar power as a supplemental or primary source of industrial or residential power depends on the ability to produce efficient PV modules on a large scale and in a cost effective manner to reduce the overall cost per unit of power generated. Certain factors greatly affect the efficiency of the PV modules in this regard. For example, CdTe is relatively expensive and, thus, efficient utilization (i.e., minimal waste) of the material is a primary cost factor, particularly in the final processing steps of defining the individual cells on the substrate. In addition, efficient utilization of the working surface area of the module results in an increased power generation capacity for the module.
Accordingly, there exists an ongoing need in the industry for improved processing steps that reduce the waste of expensive materials and increase the power generation capacity of PV modules. The present invention serves this purpose.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
A method is provided for processing substrates in the formation of photovoltaic (PV) modules, the substrates having a plurality of thin film layers deposited thereon. The method includes determining the geometric center of the substrate and performing subsequent processing steps for defining individual cells on the substrate using the geometric center as a starting reference point for such processing steps.
For example, in a particular embodiment, the subsequent processing steps may include laser scribing a pattern of lines in the thin film layers on the substrate to define the individual cells. A location for an initial one of the pattern of lines is set at a defined distance from the geometric center of the substrate.
In another embodiment, an additional subsequent processing step may define an isolation border, such as a rectangular laser scribed border, on the substrate around the individual cells using the geometric center of the substrate as a starting reference point for the border. The sides of the rectangular border are at a defined distance from the geometric center of the substrate, and the border may have a geometric center that is coincident with the geometric center of the substrate.
Another subsequent processing step may include defining an edge delete zone outward of the isolation border on the substrate using the geometric center of the substrate as a starting reference point such that the edge delete zone has sides that are located at a defined distance from the geometric center of the substrate, and may have a geometric center that is coincident with the geometric center of the substrate.
Variations and modifications to the methods discussed above are within the scope and spirit of the invention and may be further described herein.
The invention also encompasses substrates or completed PV modules having certain of the characteristics discussed above. For example, such a substrate has a geometric center and a laser scribed pattern of lines in the thin film layers thereof that define individual cells on the substrate. The pattern of lines is perpendicular to a longitudinal centerline of the substrate and is centered on the geometric center such that the pattern of lines extends in opposite longitudinal directions referenced from the geometric center. A laser scribed rectangular isolation border is defined in the thin film layers around the pattern of lines, with the isolation border defining transverse ends of the individual cells and an outer line of the first and last longitudinal ones of the cells. This rectangular isolation border has a geometric center that is coincident with the geometric center of the substrate. An edge delete zone is defined around the isolation border, and may also be centered on the geometric center of the substrate.
Variations and modifications to the embodiment of the substrate discussed above are within the scope and spirit of the invention and may be further described herein.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims.
A full and enabling disclosure of the present invention, including the best mode thereof, is set forth in the specification, which makes reference to the appended drawings, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with other embodiments to yield still further embodiments. Thus, it is intended that the present invention encompass such modifications and variations as come within the scope of the appended claims and their equivalents.
Once all of the various thin film layers have been deposited on the glass 16, the substrate 10 must be further processed in order to define the various cells, edge zones, and so forth. This typically involves various laser scribing steps, among other processes. As discussed, the present invention aims to control these further processing steps to increase the surface area of the substrate 10 that is used in the live cells so as to increase the power generation capacity of the substrate 10.
Referring to
It should be appreciated that the lines 28 and 29, connection lines between the edge marks 26, and the edge marks 26 are not physically defined on the glass sheet 16, but are empirically determined and stored in the appropriate laser scribing equipment in which the substrate 10 is received.
Once the geometric center 24 of the glass sheet 16 has been established, the subsequent processing steps are carried out for defining individual cells on the substrate 10 using the geometric center 24 as a starting reference point for the respective processing steps.
For example, referring to
Thus, it should be readily appreciated that the relative location of the pattern of lines 30 is initially dependent on the defined setback distance A or B (which distances may or may not be the same) from the geometric center 24 of the substrate 10. In other words, the end lines 30 are not defined at a distance from the transverse ends 14 of the substrate 10, but from the geometric center 24 of the substrate 10.
As illustrated in
Referring to
In an alternate embodiment of a process in accordance with aspects of the invention, it may be suitable to define the inward boundaries of the edge delete zone 38 by initially setting the lines 39 at defined distances from the edges 12, 14 of the glass sheet 16. In other words, in this embodiment, the edge delete zone 38, particularly the defining lines 39 thereof, are not necessarily dependent on the geometric center 24 of the substrate 10.
In yet another embodiment, the transverse centerline 29 may be defined as the average profile of the transverse ends (edges) the glass sheet 16, which may not be ninety degrees to the longitudinal centerline 28. The edge delete border 39 on the transverse ends may then be oriented parallel to this modified transverse centerline, with the same centering aspects as stated above for the longitudinal borders relative to the longitudinal centerline 28.
Still referring to
Still referring to
It should thus be appreciated from
The present invention also encompasses a substrate 10 for use in the manufacture of PV modules having the characteristics described above. For example, the substrate 10 has a geometric center 24 and a pattern of laser scribed lines 30 that define individual cells 32 on the substrate 10. The scribe lines 30 are perpendicular to a longitudinal centerline 28 of the substrate 10 and are set at a predefined distance from, or centered on, the geometric center 24 such that the pattern of lines 30 extends in opposite longitudinal directions from the geometric center 24, as illustrated in
The substrate 10 may also include an edge delete zone 38 defined as a border zone around the isolation scribe lines 36. In a particular embodiment, the edge delete zone is defined as a rectangular border having sides located at defined distances from the geometric center 24, and may be centered on the geometric center 24 of the substrate 10, as particularly illustrated in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.