The invention relates to a method for induction bend forming a pressure-resistant pipe having a large wall thickness and a large diameter, in particular a pipe in a power plant or a liquid or gas pipeline.
For carrying liquid and gaseous media under pressure, steel pipes are required that have a large wall thickness in order to withstand the stresses. Such requirements apply, for example, to the transport of hot steam in power plants, where pipe bends are required in order to adapt the pipelines to the constructional circumstances or for transporting crude oil in pipelines over long distances, where flexible U-shaped expansion loops are used at regular intervals to compensate for thermally induced changes in length. To enable a large throughput, a large opening cross-section and correspondingly a large outer pipe diameter is required. The present method relates to pipes with typical nominal diameters greater than 300 mm and a diameter to wall thickness ratio of 10:1 to 100:1, typically 20:1 to 70:1.
Such a method for induction bend forming has long been known, for example from DE 2513561 A1 and has been continually improved in order to produce dimensionally very stable pipe bends despite the enormous dimensions. Forming of such massive pipes can only be achieved by inductively heating a narrow annular zone to a forming temperature above 850° C. Structural changes occur in the material, which is usually fine-grained steel, in the heat-affected zone. In order to homogenize the structure after hot forming and thus improve the mechanical properties of the steel, the pipe bend is subsequently often heat-treated at a temperature of about 600° C. The straight pipe sections, which are connected before and after the pipe bend and are also referred to as tangents, are also influenced by the subsequent heat treatment. However, since they were not heated to a high temperature in the course of the forming process and their structure has, therefore, remained unchanged, the subsequent heat treatment has a negative effect on these sections; they embrittle. Thus, these sections must be separated, and the pipe bend produced by induction bend forming has to be welded to new tangents.
This has disadvantages because of the high work effort, in particular when a plurality of pipe bends, even in different directions, are carried out successively on the same pipe piece, as made possible by the device described in DE 10 2010 020 360 A1. The simplification and acceleration of pipeline construction thus achieved by producing a three-dimensional pipe structure in only one operation is negated if the straight tangent pieces have to be replaced because a thermal post-treatment of the pipe formation necessary in order to achieve certain strength values. To avoid this, only the use of pipes of high-strength steels and/or of greater wall thickness is possible in order to retain the mechanically required minimum strength values for the overall structure after the heat treatment at the tangents. However, this approach is also disadvantageous because of considerably higher material prices.
The problem addressed by the present invention is thus to improve the method of the aforementioned kind in such a way that negative influences of the forming process on the strength values of the material in the tangents adjoining the pipe bends are avoided.
The solution approach according to the invention is based on subjecting the tangents before and after the bend to exactly the same heat treatment that the bend section of the pipe has to undergo during forming, i.e., to pass the tangents through the induction device at the same speed as the pipe section to be bent and to apply the same temperature in the induction device as well as the same cooling parameters thereafter. The difference in the pass-through of the tangents is therefore simply that the pipe is not clamped in the bending lock during the treatment of the tangent and therefore no counter-forces are in effect during the feed.
Clamping only the rear end of the pipe without any further support makes it possible to operate independently of the clamping of the front end in the bending lock and furthermore allows the inductor to move freely in the direction of the rear end along the pipe wall unobstructed by support devices.
The solution according to the invention provides for an exact adjustment of the movements of the feed unit and of the inductor, which is executed and monitored by a control unit. For a full understanding of the present invention, reference should now be made to the following detailed description of the preferred embodiments of the invention as illustrated in the accompanying drawings.
The preferred embodiments of the present invention will now be described with reference to
An induction device comprises an annular inductor 20, which is positioned with its center in the region of the pipe center axis 2. According to the invention, a linear adjusting device 21 is provided in order to move the inductor 20 relative to the machine bed 10.
A bending arm 30 is pivotally supported at a vertical bending axis 32, wherein the distance of the bending axis 32 perpendicular to the pipe center axis 2 can be adjusted in order to set the desired bending radius. A bending lock 31 for gripping and clamping the pipe 1 is arranged on the bending arm 30.
Relatively close to the inductor 20 and the heat inflow zone is a cooling device 40, with which the surface temperature is cooled down, for example using water, as soon as the corresponding length section has emerged from the forming zone.
Sensors for capturing the path and speed of the pipe 1 as well as of the inductor ring 20 are provided for carrying out the method according to the invention, as well as control modules in a control unit with which the paths and speed, as well as the connection and disconnection of the inductor unit, are brought into the correlations provided according to the invention.
At the starting time shown in
The induction device 20 and the cooling device are switched on and the axial advance of the pipe 1 takes place in a first phase (see
In order to begin the bending process, the bending lock 31 on the bending arm 30 must grip the pipe 1 and clamp it so that the forces, which lead to the bending, can be introduced. However, the approach of the bending lock 31 and the application of the clamping forces require a certain period of time. A relative movement between the bending lock 31 and the pipe 1 must be avoided during the approach. The bending arm 30 with its bending lock 31 cannot be moved parallel to the advance of the pipe 1 because the structural effort for such a longitudinal movement of the support for the bending arm 30 would be much too high and because the distance of the bending lock 31 from the heating zone on the inductor ring 20 would change.
Therefore, according to the invention, the relative movement between the pipe 1 and the bending lock 31 is to be neutralized in a short phase t2 (see
When the pipe 1 is at a standstill, the bending lock 31 can be moved in, as shown in
If a pipe bend is to be produced, the initial point of the bend, which is present at the end of phase t3, can lie arbitrarily on the longitudinal axis 2 of pipe 1. On the other hand, the above-described operations at t1, t2, and t3 must be started with a precisely calculated approach so that a certain axial pipe position for the beginning of the bending process is reached when bending begins.
During the phase t4, the known induction bending process is carried out with a constant pipe feed rate vR and a stationary inductor 20, as shown in
In order to subject a rear tangent 5 on the pipe 1 to the same heat treatment as the remaining length sections of pipe 1 after the completion of the pipe bend 4, the pipe 1 and the inductor 20 move in opposite directions to the above-described starting process.
Shortly before reaching the intended bend length, the pipe feed is gradually slowed down in phase t5 at the speed vR and at the same time, the opposing movement of the inductor 20 starts at such a travel speed vI that the relative movement between the pipe 1 and inductor 20 remains constant. As a result, the residence time of each length section of the pipe 1 also remains constant in the migrating heat-affected zone. When the pipe 1 is at a standstill, the bending lock 31 can be opened. As a result, pipe 1 is now completely unobstructed by the bending arm 30.
To treat only a short end-side tangent 5 on the pipe 1, the inductor 20 can be moved simply into its end position facing the machine bed 10 in phase t6 with a constant travel speed vI, see
In order to obtain a longer tangent 5, in particular a tangent 5 followed directly by a further pipe bend, the method can be continued, as can be seen from the further flow chart according to
There has thus been shown and described a novel method for induction bend forming a pressure-resistant pipe having a large wall thickness and a large diameter, which fulfills all the objects and advantages sought therefor. Many changes, modifications, variations and other uses and applications of the subject invention will, however, become apparent to those skilled in the art after considering this specification and the accompanying drawings which disclose the preferred embodiments thereof. All such changes, modifications, variations and other uses and applications which do not depart from the spirit and scope of the invention are deemed to be covered by the invention, which is to be limited only by the claims which follow.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 106 570 | Apr 2015 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2016/100188 | 4/21/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/173583 | 11/3/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20080066517 | Tomizawa et al. | Mar 2008 | A1 |
20120085138 | Kuwayama | Apr 2012 | A1 |
20120167651 | Tomizawa et al. | Jul 2012 | A1 |
20130000375 | Okada | Jan 2013 | A1 |
20140007639 | Schaefer | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
6182452 | Jul 1994 | JP |
Entry |
---|
International Search Report of Corresponding International Application No. PCT/DE2016/100188. |
Number | Date | Country | |
---|---|---|---|
20180036780 A1 | Feb 2018 | US |