This invention relates to a method for inductive heating of a material located in a channel, wherein an internal inductive heating assembly is provided in the material in the channel which produces a magnetic flux generating inductive heating of the assembly and/or material and a physical agitation which lowers a solidus temperature of the material.
It is common practice to inductively heat an article (e.g., a solid cylinder or hollow tube) of a magnetizable material, such as steel, by inducing an eddy current in the article. This eddy current is induced by an applied magnetic flux generated by passage of an alternating current through a heater coil wound around the article. The heat inductively generated in the article may then be transmitted to another article, e.g., a metal or polymer material flowing through a bore or channel of an inductively heated steel tube.
Various systems have been proposed which utilize different combinations of materials, structural heating elements, resonant frequencies, etc., for such heating techniques. There is an ongoing need for an apparatus and method for heating a material in a channel which provides one or more of higher power density, tighter temperature control, reduced power consumption, longer operating life, and/or lower manufacturing costs.
In accordance with one embodiment of the invention, a method is provided for heating a material located in a channel. The material has a melting range between a solidus temperature and a liquidus temperature. The method includes the steps of providing an internal inductive heating assembly in the material in the channel, and supplying a signal to the assembly to generate a magnetic flux in at least one of the assembly and the material. The magnetic flux generates inductive heating of the assembly and/or material and also a physical agitation which lowers the solidus temperature of the material to a reduced solidus temperature.
The agitation may comprise, for example, a vibration in a frequency range of 5 to 500 kilohertz (kHz).
In various embodiments, the material is heated from a nonflowable state to a flowable state. The nonflowable state may be a solid state at or below the reduced solidus temperature and the flowable state a semi-solid state. The semi-solid state may be below the solidus temperature and above the reduced solidus temperature. When the material is in a flowable state the physical agitation of the material (directly or via the sheath) may effectively produce a stirring of the material.
In various embodiments, the supplied signal is adjusted to produce a desired range of temperature cycling of the material, which includes a change of the material into or from a flowable state across the reduced solidus temperature. The change of the material may be between a solid state and a semi-solid state.
In another embodiment, the supplied signal is varied to provide alternate heating and cooling of the material across the reduced solidus temperature.
In one embodiment, the channel is provided in an outer element, and the method includes cooling of the material by thermal conduction of heat from the material to the outer element.
In another embodiment, the internal inductive heating assembly includes an exterior sheath disposed in contact with the material and an interior coil inductively coupled to the sheath. The signal is supplied to the coil to generate the magnetic flux in one or both of the sheath and the material. Both the inductive heating and physical agitation may be generated in the sheath. The physical agitation generated in the sheath may then be transmitted to the material. Alternatively, or in addition, both the inductive heating and physical agitation may be generated in the material.
In various other embodiments, the inductive heating and/or physical agitation are generated in only one, but not both, of the inductive heating assembly and the material.
The material may be a metal alloy. The material may be a metal containing composition, such as a metal/polymer composition, a metal/ceramic composition, and/or a metal matrix composition. The material may be one or more of an eclectically conductive, ferromagnetic, electrically non-conductive, thermally insulating and thermally conductive material.
The signal supplied to the coil may comprise current pulses providing high frequency harmonics in the coil. This signal is particularly useful in systems having a high damping coefficient which are difficult to drive (inductively) with sustained resonance.
These and other features and/or advantages of several embodiments of the invention may be better understood by referring to the following detailed description in conjunction with the accompanying drawings.
In accordance with various embodiments of the invention, an inductive heating apparatus generates a physical agitation of a material being heated. This heating by agitation lowers the solidus temperature and thus extends the temperature range in which the material exists in a flowable or semi-solid state.
The upper boundary of the liquid-plus-solid region is a liquidus temperature curve 84. Above this temperature, any alloy of the system exists as a liquid phase (until the temperature increases to a level at which vaporization begins).
In accordance with the invention, the lower solidus temperature 80 has been reduced to a reduced solidus temperature 82, due to physical agitation of the material in a channel, as described further below.
A particular application of the method of the invention is illustrated in
Before returning to
A first embodiment of an inductive heating assembly is illustrated in
During a next molding cycle, the nonflowable plug must again be heated to a fluid (flowable) state. For this purpose, an inductive heating assembly (probe heater 10) is positioned in the material in the channel 102, with the closed end 16 of the outer sheath disposed at or near the separation area 106. The probe heater 10 is centrally disposed in the channel 102 and is surrounded by a relatively narrow annular width of open channel area. A plug of material will be formed around the sheath in the area 112 at the gate end of the channel. In order to melt the plug (reduce its viscosity) so that material can again be injected through the gate, a magnetic field (see lines 105) is generated by the interior coil 20 of the probe which is transmitted to one or more of the exterior sheath 52 and the material 100 in the channel for inductive heating of the sheath and/or material respectively. In addition to inductive heating, the plug material is also heated by agitation (see arrows 107) of the plug material. The plug is thus heated and converts back to a fluid state, allowing the material to flow around the exterior sheath and exit through the gate 106.
The probe heater according to the present invention is not limited to specific materials, shapes or configurations of the components thereof. A particular application or environment will determine which materials, shapes and configurations are suitable.
For example, the inductor coil may be one or more of nickel, silver, copper and nickel/copper alloys. A nickel (or high percentage nickel alloy) coil is suitable for higher temperature applications (e.g., 500 to 1,000° C.). A copper (or high percentage copper alloy) coil may be sufficient for lower temperature applications (e.g., <500° C.). The coil may be stainless steel or Inconel (a nickel alloy). In the various embodiments described herein, the water cooling of the coil is not required nor desirable.
The power leads supplying the inductor coil may comprise an outer cylindrical supply lead and an inner return lead concentric with the outer cylindrical supply lead. The leads may be copper, nickel, Litz wire or other suitable materials.
The dielectric insulation between the inductor coil and outer ferromagnetic sheath may be a ceramic such as one or more of magnesium oxide, alumina, and mica. The dielectric may be provided as a powder, sheet or a cast body surrounding the coil.
The coil may be cast on a ceramic dielectric core, and a powdered ceramic provided as a dielectric layer between the coil and sheath.
The coil may be cast in a dielectric ceramic body and the assembly then inserted into the sheath.
The sheath may be made from a ferromagnetic metal, such as a series 400 stainless steel or a tool steel.
The flux concentrator may be provided as a tubular element disposed between the coil and the return lead. The flux concentrator may be a solid, laminated and/or slotted element. For low temperature applications, it may be made of a non-electrically conductive ferromagnetic material, such as ferrite. For higher temperature applications it may comprise a soft magnetic alloy (e.g., cobalt).
The coil geometry may take any of various configurations, such as serpentine or helical. The coil cross-section may be flat, round, rectangular or half round. As used herein, coil is not limited to a particular geometry or configuration; a helical wound coil of flat cross section as shown is only one example.
As used herein, heating includes adjusting, controlling and/or maintaining the temperature of a material in a channel.
In a more specific embodiment, given by way of example only and not meant to be limiting, the probe heater may be disposed in a melt channel for heating magnesium. The heater may comprise a tool steel outer sheath, a nickel coil, an alumina dielectric, and a cobalt flux concentrator. The nickel coil, steel sheath and cobalt flux concentrator can all withstand the relatively high melt temperature of magnesium. The nickel coil will generally be operating above its Curie Temperature (in order to be above the melt temperature of the magnesium); this will reduce the “skin-effect” resistive heating of the coil (and thus reduce over-heating/burnout of the coil). The steel sheath will generally operate below its Curie Temperature so as to be ferromagnetic (inductively heated), and will transfer heat by conduction to raise the temperature of the magnesium in which it is disposed (during heat-up and/or transient operation). The sheath may be above its Curie Temperature once the magnesium is melted, e.g., while the magnesium is held in the melt state (e.g., steady state operation or temperature control). The coil will be cooled by conductive transmission to the sheath. Preferably the Curie Temperature of the flux concentrator is higher than that of the sheath, in order to maintain the permeability of the flux concentrator, close the magnetic loop, and enhance the inductive heating of the sheath.
Again, the specific materials, sizes, shapes and configurations of the various components will be selected depending upon the particular material to be heated, the cycle time, and other process parameters.
In various applications of the described inductive heating method and apparatus, it may generally be desirable that the various components have the following properties:
In applications where there is direct coupling of the magnetic field to the material, the desired parameters of the sheath are also desired parameters of the material.
The material in the channel to be heated will also effect the parameters of the assembly components, the applied signal and the heating rates. In various embodiments, the material may include one or more of a metal and a polymer, e.g., a pure metal, a metal alloy, a metal/polymer mixture, etc. In other embodiments the assembly/process may be useful in food processing applications, e.g., where grains and/or animal feed are extruded and cooled.
In various applications, it may be desirable to supply a signal to the coil comprising current pulses having a desired amount of pulse energy in high frequency harmonics for inductive heating of the sheath, as described in Kagan U.S. Pat. Nos. 7,034,263 and 7,034,264, and in Kagan U.S. Patent Application Publication No. 2006/0076338 A1, published Apr. 13, 2006 (U.S. Ser. No. 11/264,780, entitled Method and Apparatus for Providing Harmonic Inductive Power). The current pulses are generally characterized as discrete narrow width pulses, separated by relatively long delays, wherein the pulses contain one or more steeply varying portions (large first derivatives) which provide harmonics of a fundamental (or root) frequency of the current in the coil. Preferably, each pulse comprises as least one steeply varying portion for delivering at least 50% of the pulse energy in the load circuit in high frequency harmonics. For example, the at least one steeply varying portion may have a maximum rate of change of at least five times greater than the maximum rate of change of a sinusoidal signal of the same fundamental frequency and RMS current amplitude. More preferably, each current pulse contains at least two complete oscillation cycles before damping to a level below 10% of an amplitude of a maximum peak in the current pulse. A power supply control apparatus is described in the referenced patents/application which includes a switching device that controls a charging circuit to deliver current pulses in the load circuit so that at least 50% (and more preferably at least 90%) of the energy stored in the charging circuit is delivered to the load circuit. Such current pulses can be used to enhance the rate, intensity and/or power of inductive heating delivered by a heating element and/or enhance the lifetime or reduce the cost in complexity of an inductive heating system. They are particularly useful in driving a relatively highly damped load, e.g., having a damping ratio in the range of 0.01 to 0.2, and more specifically in the range of 0.05 to 0.1, where the damping ratio, denoted by the Greek letter zeta, can be determined by measuring the amplitude of two consecutive current peaks α1, α2 in the following equation:
This damping ratio, which alternatively can be determined by measuring the amplitudes of two consecutive voltage peaks, can be used to select a desired current signal function for a particular load. The subject matter of the referenced Kagan patents/application are hereby incorporated by reference in their entirety.
These and other modifications will be readily apparent to the skilled person as included within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1852215 | Northrup | Apr 1932 | A |
2829227 | Antonis | Apr 1958 | A |
2875311 | Harkenrider | Feb 1959 | A |
2947045 | Goldhamer | Aug 1960 | A |
3376403 | Mircea | Apr 1968 | A |
3536983 | Kennedy | Oct 1970 | A |
3620294 | Hetzel et al. | Nov 1971 | A |
4704509 | Hilmersson et al. | Nov 1987 | A |
5012487 | Simcock | Apr 1991 | A |
5101086 | Dion | Mar 1992 | A |
5385200 | Yuki et al. | Jan 1995 | A |
5713069 | Kato | Jan 1998 | A |
5902509 | Bruckner et al. | May 1999 | A |
6084225 | Schmitt | Jul 2000 | A |
6460596 | Yamaguchi et al. | Oct 2002 | B1 |
6546039 | Fishman | Apr 2003 | B2 |
6798822 | Fishman et al. | Sep 2004 | B2 |
6892970 | Nussio | May 2005 | B2 |
7034263 | Kagan | Apr 2006 | B2 |
7034264 | Kagan | Apr 2006 | B2 |
7049562 | Tanino et al. | May 2006 | B2 |
RE39291 | Kestle et al. | Sep 2006 | E |
7140873 | House | Nov 2006 | B1 |
20020189781 | Shibata et al. | Dec 2002 | A1 |
20030057201 | Johnson | Mar 2003 | A1 |
20030067376 | Maenosoni | Apr 2003 | A1 |
20030132224 | Spencer | Jul 2003 | A1 |
20040028111 | Fishman et al. | Feb 2004 | A1 |
20040084171 | Akers et al. | May 2004 | A1 |
20050191098 | Ueno et al. | Sep 2005 | A1 |
20060076338 | Kagan | Apr 2006 | A1 |
20060093413 | Matsumoto | May 2006 | A1 |
Number | Date | Country |
---|---|---|
965761 | Jun 1957 | DE |
3118030 | Dec 1982 | DE |
102005021238 | Nov 2006 | DE |
0403138 | Dec 1990 | EP |
508255 | Jun 1939 | GB |
1-170547 | Jul 1989 | JP |
1-313134 | Dec 1989 | JP |
2004 108666 | Apr 2004 | JP |
2005-259558 | Sep 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20080041551 A1 | Feb 2008 | US |