A method for inductively heating of an electrically conductive workpiece by rotating the workpiece in a magnetic field is known from “Temperature distribution in aluminum billets heated by rotation in a static magnetic field produced by superconducting magnets” (Preprint COMPEL; Vol. 24, No. 1, pages 281 to 290, (2004)). However, the document does not reveal how the method may be put into practice technically.
From WO 2004/066681 A1 it is known to rotate a workpiece in a magnetic field of a direct-current carrying coil arrangement. This makes possible a uniform inductive heating of the workpiece in a static magnetic field. The latter is generated without losses by means of a high-temperature superconducting coil arrangement. The workpiece may be, in particular, a block or billet, for example, of aluminum, copper, or corresponding alloys. Usual diameters are between 50 mm and 400 mm, and usual lengths between 20 mm and 1,000 mm. The rotation axis of the workpiece forms an angle of 90° with the principal axis of the magnetic field. According to the known Law of Induction, the increase of temperature per unit of time becomes greater as the flux density of the magnetic field becomes higher, and as the rotation number of the workpiece becomes higher.
From “Strangpressen”, Aluminium-Verlag Düsseldorf, 2001, 553 to 555, it is known to heat a block inductively so that it has, along an axial direction, a temperature profile which in a subsequent transformation zone leads to an optimum temperature that is the same along the length of the block. With light metals, a block starting-end or block head should therefore have a temperature that is, for example, up to 100° C. higher than that of the block end. With copper alloys, an inverse temperature distribution is frequently desired. For this, the block that is moved linearly through an elongate coil arrangement generating an alternating field is additionally heated following uniform heating to a base temperature by switching on partial coils in desired regions. This method is costly, for reasons of the ohmic losses in the coil arrangement, and the outlay of control technology, amongst others.
From DE 1 215 276 A, a method is known for inductive heating of an electrical workpiece inside an alternating-current fed induction coil which in turn is surrounded by at least one electrical short-circuit ring. By varying the diameter of the short-circuit ring, its reactive or effective power consumption can be regulated in order to achieve a steady, spatially limited variation of the specific heating power of the induction coil.
A method is described herein for inductive heating of an electrically conducting workpiece by rotating the workpiece in a magnetic field of a direct-current carrying coil arrangement comprising superconductive windings, about a rotation axis that forms an angle with the principal axis of the magnetic field. The flux density of the magnetic field permeating the workpiece is set differently along the rotation axis. Furthermore, the described method allows temperatures that differ from each other along the workpiece to be obtained when the flux density of the magnetic field permeating the workpiece is set differently along the rotation axis.
The above and still further features and advantages of the present invention will become apparent upon consideration of the following definitions, descriptions and descriptive figures of specific embodiments thereof, wherein like reference numerals in the various figures are utilized to designate like components. While these descriptions go into specific details of the invention, it should be understood that variations may and do exist and would be apparent to those skilled in the art based on the descriptions herein.
Exemplary embodiments of the method and schematically simplified arrangements for its performance are illustrated in the following for example with the aid of the drawings, where:
a is another embodiment of a superconducting coil arrangement with a yoke in an end-face view and a partial sectional side view;
b is the same coil arrangement as in
a is a superconducting coil on a limb of a C-shaped yoke in an end-face view and a partial sectional view rotated through 90°;
b is an end-face view of a C-shaped yoke with an arrangement of two superconducting coils;
a is a race-track coil similar to
b is a sectional view of an arrangement of two superconducting coils having a common axis;
a is a workpiece with points of temperature measurement;
b is the same workpiece with a rotation axis tilted by 6° with respect to an axis orthogonal to the axis of a magnetic field; and
Described herein is a method to inductively heat a workpiece such that the temperature of a typical cylindrical workpiece along its central axis coinciding with the rotation axis of the workpiece follows a desired course, i.e., has a temperature gradient that differs from zero, but is not necessarily constant.
The flux density of the magnetic field permeating the workpiece is set differently along the rotation axis. This may be performed either by specifically affecting the local flux density, and/or by suitably positioning the rotating workpiece relative to the inhomogeneous magnetic field.
In the following, for the sake of simplicity the regions of lower flux density are designated as being a (relatively) weaker magnetic field, and conversely, regions of higher flux density as being a (relatively) stronger magnetic field.
The coil arrangement generating the magnetic field is preferably high-temperature superconducting. In particular, it may consist of one or a plurality of dipole magnetic-field generating coils which in the latter case are disposed adjacently to be mechanically parallel, and which enclose an approximately oval space, and which are so-called race-track coils. The workpiece rotates in this space about a rotation axis coinciding approximately with the long axis of the oval.
A flux density that is specifically different along the rotation axis can be generated, for example, via a magnetic short circuit introduced into a partial region of the magnetic field. The magnetic short circuit may consist of a ferromagnetic body. The magnetic field is weaker in the vicinity of this body. The region of the workpiece lying within this magnetic field is accordingly heated less intensely.
The flux density that is different along the rotation axis may also be generated via an additional coil.
This additional coil may be positioned, for example, to be displaced parallel to the axis of the superconducting coil arrangement. The additional coil may be positioned, for example, to be laterally adjacent to the coil arrangement on a level with one or the other end of the oval space, in order to amplify the magnetic field which is already stronger in this region. The part of the rotating workpiece located within this region is then heated more intensely.
Optionally, the additional coil can be positioned on the same axis as the rotation axis to surround the workpiece concentrically in a partial region of the magnetic field. The workpiece is then permeated by both the magnetic field of the coil arrangement, and also the magnetic field, orthogonal to this, of the additional coil that in this case is fed with alternating current.
A flux density that differs in dependence upon locality may be generated also via a ferromagnetic yoke surrounding the coil arrangement on the outside. It is possible to affect the strength of the magnetic field along the rotation axis by appropriately configuring the geometry of the yoke along the straight long coil sides. At the same time, the yoke has the advantage of screening-off the magnetic field of the coil arrangement to the outside, and of increasing the flux density within the space enclosed by the coil arrangement and therewith through the coil arrangement at the same number of ampere turns.
To further increase the flux density, the yoke can be optionally configured in a shape similar to a torus that is open on the inside.
Alternatively, the yoke also may have a closed or an open, circular or C-shaped cross-section with at least one pole-piece on each of both sides of the rotation axis. In the case of an open cross-section (at right angles to the rotation axis), or more exactly, of a hollow cylinder that is open along a surface line, the rotation axis of the workpiece is located between the faces of the hollow cylinder that define the slot-shaped opening and form the pole-pieces, or are configured to be pole-pieces.
Basically, the coil arrangement may be seated at any desired place on the yoke. The magnetic field, however, may be generated also via one superconducting coil on each one of the pole-pieces.
The flux density that differs along the rotation axis may be optionally generated via changing a spacing of the pole-faces of the pole-pieces of the yoke along the rotation axis.
A flux density of the magnetic field permeating the workpiece, which differs along the rotation axis, can be set in particular also by changing the angle between the rotation axis of the workpiece and the principal axis of the magnetic field. This angle then deviates from 90°. The point about which the rotation axis is tilted from the principal axis of the magnetic field can be chosen in dependence upon the temperature distribution required along the length of the workpiece. If the rotation axis is tilted, for example, around a point located in the region of an end-face of a cylindrical workpiece, then, this region of the workpiece remains in the region of the strong magnetic field, while the opposite end-face region is located in a weaker magnetic field and is therefore heated less intensely. The angle of tilt may be between about 2° and about 20°, in accordance with an angle between about 88° and 70° formed by the rotation axis and the principal axis of the magnetic field.
In the following paragraphs, exemplary embodiments of the method are described in connection with the figures.
According to
Instead of providing, as in
A modification of this embodiment is illustrated by
The arrangement illustrated in
b shows an arrangement similar to that of
a shows an arrangement in which a superconducting coil S3 encloses the long limb of a C-shaped yoke J3, between the pole-pieces P3 and P4 of which the workpiece rotates. The sectional view and the rotated plan view clearly show that the pole pieces P3 and P4 define a space around the workpiece W, which narrows from the right-hand side to the left-hand side, so that the workpiece W becomes heated progressively more intensely along its extent from its right-hand side to its left-hand side, in accordance with the decrease of the air-gap. This arrangement has the advantage of an approximately constant temperature gradient along the length of the workpiece.
The arrangement of
The arrangement illustrated in
The arrangement of
The following table illustrates on a numerical example the attainable temperatures and temperature differences. The workpiece consists of a billet having a length of 800 mm and a diameter of 250 mm. In the table, the term “Equilibrium” denotes a waiting time following the end of the inductive heating and prior to a determination of the temperatures at the points as drawn in
While the invention has been described in detail with reference to specific embodiments thereof, it will be apparent to one of ordinary skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. Accordingly, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
102005061670.4-37 | Dec 2005 | DE | national |
This application is a continuation of International Application No. PCT/EP2006/012402, filed on Dec. 21, 2006, entitled “Method for Inductive Heating of a Workpiece,” which claims priority under 35 U.S.C. §119 to Application No. DE 102005061670.4-37 filed on Dec. 22, 2005, entitled “Method for Inductive Heating of a Workpiece,” the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP06/12402 | Dec 2006 | US |
Child | 11767278 | Jun 2007 | US |