The invention relates to a method for influencing the direction of travel of motor vehicles. The invention also relates to a motor vehicle with a redundant steering system and to a computer program with program code means.
Conventional steering systems for motor vehicles are sufficiently well known from practice. Nowadays, with few exceptions, practically all motor vehicles are equipped with a so-called axle pivot or Ackerman steering.
In recent times, driver assistance systems have been increasingly employed in motor vehicles in order to automate the driving task. As an example, an adaptive cruise control, a traffic congestion assistant, an autobahn or highway pilot, or a fully autonomously operating motor vehicle are mentioned. The higher the degree of automation of the driving task, the greater are the requirements placed on the reliability of the sensors, control instruments, actuators, and mechanical components involved in the tasks. The failure probabilities of all involved components must be as low as possible, for which reason often only redundant systems represent a solution. Accordingly, for steering systems, at least partially redundant steerings must be developed for highly automated driving, for example.
The effort involved in implementing the required failsafe performance for a steering system is very extensive and usually requires the doubling of processors, plugs, windings, cablings, and mechanical components. The assembly thereby becomes not only very complex, but also very expensive. In part for reasons of function and packing space, a doubling, in particular a doubling of mechanical components, is not possible at all.
The utilization of the motor vehicle brake for stabilization of a motor vehicle or for a redundant steering task is known. In this case, it is intended essentially to produce a yaw torque by braking on one side and thereby to assist the steering of the motor vehicle. In the process, individual wheels or all wheels on one side of the motor vehicle are braked.
DE 196 05 553 C1 relates to a steering system with an emergency steering system that is capable of actuating wheel brakes at different sides of the motor vehicle depending on the actuation of a steering control.
DE 10 2014 200 608 A1 relates to a method for operating a motor vehicle that has at least two wheel axles, at least one of which has steerable wheels, and at least one device for influencing a torque of the wheels individually for each wheel, wherein a steering of the wheels is assisted by a power steering depending on a desired steering angle. It is provided that the functional ability of the power steering is monitored and that, when a malfunction of the power steering is detected, a torque is influenced by the device at only one of the steerable wheels for adjustment of the desired steering angle.
It is known that the steering effect due to an influencing of the torque is greater, the more positive or the greater is the so-called steering roll radius or scrub radius of the steerable axles of the motor vehicle. A steering roll radius is understood to mean the distance from the point of intersection of an imaginary, extended line of the steering axle or steering axis through the plane of the roadway to the point of intersection of the centerline of the wheel contact surface through the plane of the roadway. If the point of intersection of the imaginary line of the steering axle with the roadway lies closer to the center of the motor vehicle than does the point of intersection of the centerline of the wheel contact surface with the roadway, then one refers to a positive steering roll radius. If, in contrast, the point of intersection of the imaginary line of the steering axle lies further away from the center of the motor vehicle than does the point of intersection of the centerline of the wheel contact surface with the roadway, then the steering roll radius is negative. A steering roll radius equal to zero is present when the two points of intersection coincide. During a braking operation with different frictional grip on the individual sides of the track, a motor vehicle with a positive steering roll radius tends to pull toward the side with better grip. A motor vehicle of this kind is highly sensitive to disruptions in the region of the steering system or of the wheels and can even break away when, for example, it travels over unevenness in the roadway. In contrast, a motor vehicle with a negative steering roll radius exhibits a self-stabilizing straight drivability. The motor vehicle can be prevented or at least impeded from braking away by a negative steering roll radius; the steering system acts in a track-stabilizing manner. Consequently, for reasons of comfort, the steering roll radius in motor vehicles is often designed to be negative to slightly positive. However, this then leads to the fact that, through braking on one side, it is also not possible to produce greater steering torques or yaw torques. Accordingly, a redundant steering system constructed in this way can contribute in only a very limited manner to influencing the direction of travel.
For stabilization of a four-wheel vehicle with a wheel hub motor during braking and/or driving, DE 10 2007 043 159 B4 proposes that a so-called axle pivot or Ackerman offset is determined in such a way that the wheel of the vehicle is stabilized.
The present invention is based on the object of creating a method for achieving a redundant steering task for influencing the direction of travel of motor vehicles, which can be produced with technically simple means and accordingly is also economically more favorable.
Through the adjustment of the steering roll radius of at least one of the steering axles before a force component acting orthogonally to the direction of travel is applied to the first steering system in the region of at least one wheel, it is possible for the redundant steering system to bring about a markedly more flexible influencing of the direction of travel of the motor vehicle even for relative small force components. It is thereby possible for motor vehicles, such as, for example, motor vehicles with an at least partially automated driving function, to use a low-cost conventional steering, such as, for example, an axle pivot or Ackerman steering. The redundancy of the steering system can then be ensured in a technically and economically simple manner on the basis of the present invention.
A force component that acts orthogonally to the direction of travel is understood in the present case to mean that a force applied to the first steering system acts, at least proportionately, orthogonally to the direction of travel. A force of this kind can be introduced, for example, via the brake system of the motor vehicle. Alternatively, the force can also be produced through an adjustment of the wheel suspension of at least one of the wheels of the steering axle by actuators. Obviously, other approaches for introducing the required force are also conceivable and can be employed by the person skilled in the art, depending on the design of the steering system, the wheels, the drive system, the braking system, and the wheel suspension.
Even though the present invention can be utilized fundamentally in combination with many different steering technologies, it is provided, in particular, for utilization of the invention with an axle pivot or Ackerman steering.
In an embodiment of the invention, it can be provided that the force component acting orthogonally to the direction of travel is produced, at least proportionately, through an influencing of the torques that are applied to the at least two wheels of the steering axle. An influencing of the torques independently of one another can be achieved, for example, by braking on one side. However, an influencing of the torques independently of one another can also be achieved by acceleration on one side.
It can also be provided that the force component acting orthogonally to the direction of travel is produced, at least proportionately, through an influencing of the rotational speeds of the at least two wheels of the steering axle relative to one another. An influencing of the rotational speeds of the at least two wheels of the steering axle relative to one another can be achieved, in turn, by braking on one side or by acceleration on one side.
The force component acting orthogonally to the direction of travel can be produced, at least proportionately, through an influencing of the respective power that is supplied by a drive motor of the motor vehicle and can be applied to the at least two wheels of the steering axle.
Through the force component acting orthogonally to the direction of travel, on the one hand, a strong yaw torque is directly applied to the motor vehicle and, on the other hand, forces are applied to the steering mechanism, as a result of which, via the coupling with the steering gear, the influenced wheels cause the non-influenced wheels to turn in a desired direction of travel as well.
A solution of this kind can be advantageous, because the first steering system and the braking system or drive system of the motor vehicle usually act fully or nearly fully autarchically of each other. Full or nearly full redundancy is made possible in this way. Even when there is a failure of the steering system that causes a complete blocking of the steering system, it is nonetheless possible, through an influencing of the applied torques or rotational speeds, to achieve a residual steering effect via the yaw torque.
In another embodiment of the invention, it can be provided that the force component acting orthogonally to the direction of travel is produced, at least proportionately, through an adjustment of the toe angle of at least one of the wheels of the steering axle. Such a manipulation of the wheel suspension or of the wheel bearing can occur, for example, through actuators of the wheel suspension.
An example for a wheel suspension that can be adjusted by actuators is a so-called twin tandem wheel bearing, which is described in DE 10 2009 033 105 A1. Disclosed therein is an adjustment device for a wheel suspension of motor vehicles, in which a wheel camber angle and a steering angle can be adjusted by use of at least one actuator.
The force component acting orthogonally to the direction of travel can be utilized for adjusting a steering angle. In this way, depending on the previously adjusted steering roll radius, the direction of travel of the motor vehicle can be influenced to a defined extent through the redundant steering system.
In an advantageous variant of the invention, it can be provided that the steering roll radius of the at least one steering axle is adjusted in such a way that the steering roll radius is quantitatively increased, starting from a default setting, during the operation of the redundant steering system.
A default setting of the steering roll radius can be, in particular, a negative steering roll radius. A negative steering roll radius can, as mentioned in the introduction, make possible a markedly increased comfort in the control of the steering system. In order to augment the functional scope of the redundant steering system, it can be advantageous to increase the track-stabilizing, comfortable steering roll radius. Accordingly, the steering roll radius can be adjusted to a slightly negative value, a neutral value, a slightly positive value, or, especially preferred, a strongly positive value. In the case of a strongly positive steering roll radius, even a slight engagement, in particular through the force component acting orthogonally to the direction of travel, it is possible for a large effect on the entire first steering system to be manifested. An influencing of individual wheels that are attached to the steering axle of the first steering system can thus bring about an influencing of the entire steering system, that is, the non-influenced wheels can also be deflected.
In one embodiment of the invention, it can be provided that the steering roll radius is adjusted at a front axle of the motor vehicle and/or the force component acting orthogonally to the direction of travel is applied to a front axle of the motor vehicle. This can be advantageous, in particular, when the at least one steering axle is also designed as a front axle of the motor vehicle, as is usually the case for most motor vehicles. Obviously, it can also be provided that the steering roll radius is adjusted at a rear axle of the motor vehicle, and/or the force component acting orthogonally to the direction of travel is applied to a rear axle of the motor vehicle.
In an enhancement of the invention, it can be provided that, depending on an input of a driver at a steering control, a control and/or a regulation controls/control or regulates/regulate the redundant steering system through the set values of the steering roll radius of the steering axle and/or through the torques that are applied to the wheels and/or through the toe angles of the wheels. In particular, a regulation that influences the redundant steering, depending on an input of a driver at a steering control, can be used in an advantageous way. In the optimal case, the redundant steering can then act like a conventional steering or like the first steering and, even in the event of a failure of the first steering, the driver can still steer the motor vehicle with nearly no restriction. Obviously, as set values, it is possible, additionally or alternatively, also to take into consideration the rotational speeds of the wheels.
In one embodiment of the invention, it can be provided that the steering roll radius is adjusted in that a camber angle and/or a king pin inclination and/or one pivot point or a plurality of pivot points of the wheel suspensions of the at least one steering axle is or are adjusted by means of an actuator.
The term camber or camber angle refers to the inclination of the plane of the wheel with respect to the inner side of the motor vehicle or with respect to the outer side of the motor vehicle in relation to a straight line orthogonal to the roadway surface. Through the manipulation of the camber, the steering roll radius can be influenced in that the contact point of the wheel contact surface with the roadway is shifted. The term king pin inclination refers to the change in the inclination of the steering axis itself. It is thereby possible to adjust the steering roll radius as well, because the point of intersection of the imaginary, extended line of the steering axle can be shifted by the roadway surface. An adjustment of the steering roll radius can also be achieved in that one pivot point or a plurality of pivot points of a wheel suspension is or are shifted. In an enhancement of the invention, it can be provided, in particular, that a twin tandem wheel bearing or a double wishbone is utilized as a wheel suspension. If need be, it can also be provided that the steering roll radius is adjusted through a manipulation of the wheel rim offset. A direct manipulation of the so-called disturbing force lever arm can be provided in that the wheel suspension is shiftably mounted parallel to the plane of the roadway.
In an enhancement of the invention, it can be provided that the redundant steering system is automatically engaged when the first steering system fails or is restricted in its function. It can also be provided that the redundant steering system merely assists the first steering system when, for example, the power steering of the motor vehicle fails. Obviously, the redundant steering system can also be utilized when the first steering system completely fails. This also applies in the event of a blocking of the first steering system. In the event of a blocking of the first steering system, a residual steering effect can exist via the yaw torque of the motor vehicle.
The invention also relates to a motor vehicle with a redundant steering system, comprising a steering axle with at least two wheels, wherein the wheels are joined to the steering axle through wheel suspensions that can be adjusted by actuators, and a device for producing a force component acting orthogonally to the direction of travel in the region of at least one wheel, said device acting on the first steering system. In this way, it is provided that the redundant steering system has an apparatus for adjusting the steering roll radius of at least one of the steering axles and at least one electronic regulation instrument and/or control instrument, on which a method for influencing the direction of travel of motor vehicles can be implemented.
As a wheel suspension, it is possible to use, in particular, a twin tandem wheel bearing, such as described in DE 10 2009 033 105 A1, or a double wishbone suspension.
The invention further relates to a computer program with program code means in order to carry out a method for influencing the direction of travel of motor vehicles, as described above, when the program is run on a microprocessor of a computer, in particular on an electronic regulation instrument and/or control instrument of a motor vehicle. A software solution of this kind can be advantageous, for example, when the sensors and actuators required for the method are already present on the hardware side. In this case, it is possible to conduct function upgrades by means of a simple software update. This affords, among other things, advantages of an economic nature and in terms of customer satisfaction, and an increase in the residual value of the motor vehicle.
Exemplary embodiments of the invention are described below on the basis of the drawings, from which additional features in accordance with the invention ensue. Features of an exemplary embodiment can also be implemented independently of the other features of the same exemplary embodiment and accordingly can be combined with features of other exemplary embodiments by the person skilled in the art. In the figures, functionally identical elements are furnished with the same reference numbers.
Shown schematically are:
It is provided to produce a redundant steering system by adjusting a steering roll radius Rϕ (see
It is provided that the wheels 6 are connected to the steering axle 3 through a wheel suspension 7 that can be adjusted by actuators. As a wheel suspension 7, it is possible to use, for example, a twin tandem wheel bearing 8 (see
For example, the force component FL acting orthogonally to the direction of travel can be produced proportionately through an influencing of the torques that are applied to the at least two wheels 6 of the steering axle 3. For an influencing of the direction of travel of the motor vehicle 2 toward the left in
Owing to the fact that the steering roll radius Rϕ was previously changed and, preferably starting from a default setting, was quantitatively increased, the conventional steering system 4 is fundamentally prone to manipulations or disruptions. Through the applied force component FL acting orthogonally to the direction of travel, for example, due to influencing of the respective torques that are applied to the at least two wheels 6 of the steering axle 3 and the thereby resulting yaw torque, the entire conventional steering system 4 is influenced. A deflection of the entire steering system, including the non-influenced wheels 6 is thereby produced.
The force component FL acting orthogonally to the direction of travel can also be produced via an adjustment of the toe angle or by other adjustments of the wheel suspension 7, 8 by actuators.
It can be provided that the redundant steering system is engaged automatically when the conventional steering system 4 fails or is restricted in its function. A control and/or a regulation of the redundant steering system can then be controlled or regulated, depending on an input of a driver at the steering control 5, through the set values of the steering roll radius Rϕ of the steering axle 3 and/or through the torques that are applied at the wheels 6 and/or through the rotational speeds of the wheels 6 and/or through the toe angles of the wheels 6.
Illustrated in
Illustrated in
In combination with the present invention, the illustrated twin tandem wheel bearing 8 can be used in a simple manner for adjusting the steering roll radius Rϕ through a change in the camber angle α (see
It can be provided that the steering roll radius Rϕ is adjusted via further measures. For clarification, several possible set values are indicated in
Illustrated in
Shown schematically in
The illustrated course of
Number | Date | Country | Kind |
---|---|---|---|
10 2016 001 592 | Feb 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/051079 | 1/19/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/137228 | 8/17/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5305218 | Ghoneim | Apr 1994 | A |
6611784 | Tobaru | Aug 2003 | B2 |
7369927 | Hille | May 2008 | B2 |
7966146 | Shkolnikov | Jun 2011 | B2 |
9162656 | Mattson | Oct 2015 | B2 |
20020001076 | Jackson | Jan 2002 | A1 |
20020134149 | Shiraishi | Sep 2002 | A1 |
20040026158 | Rieth | Feb 2004 | A1 |
20050236896 | Offerle et al. | Oct 2005 | A1 |
20060276944 | Yasui | Dec 2006 | A1 |
20070169969 | Hummel | Jul 2007 | A1 |
20080119978 | Stieff | May 2008 | A1 |
20080177442 | Tsukasaki | Jul 2008 | A1 |
20080294355 | Berthold | Nov 2008 | A1 |
20090051135 | Lohmuller | Feb 2009 | A1 |
20120235373 | Hintzen | Sep 2012 | A1 |
20130075185 | Sugai | Mar 2013 | A1 |
20140035251 | Glanzer et al. | Feb 2014 | A1 |
20150054244 | Seo et al. | Feb 2015 | A1 |
20150151604 | Park | Jun 2015 | A1 |
20150151778 | Kageyama | Jun 2015 | A1 |
20150291210 | Kageyama | Oct 2015 | A1 |
20180086374 | Sato | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
101722807 | Jun 2010 | CN |
202320495 | Jul 2012 | CN |
103476665 | Dec 2013 | CN |
104417616 | Mar 2015 | CN |
196 05 553 | Aug 1997 | DE |
103 30 894 | Feb 2005 | DE |
10 2006 046 497 | Apr 2008 | DE |
10 2007 043599 | Mar 2009 | DE |
10 2008 046 007 | Mar 2010 | DE |
10 2009 033 105 | Jan 2011 | DE |
10 2014 200 608 | Jul 2015 | DE |
0979769 | Feb 2000 | EP |
3 090 907 | Nov 2016 | EP |
2015107739 | Jun 2015 | JP |
10-2007-0081894 | Aug 2007 | KR |
WO-2010147100 | Dec 2010 | WO |
Entry |
---|
International Search Report dated Mar. 30, 2017 of corresponding International application No. PCT/EP2017/051079; 5 pgs. |
Written Opinion of the International Search Authority dated Mar. 30, 2017 of corresponding International application No. PCT/EP2017/051079; 7 pgs. |
Examination Report dated Feb. 3, 2017 of corresponding German application No. 10 2016 001 592.6; 11pgs. |
Notification of Transmittal of Translation of the International Preliminary Report on Patentability dated Aug. 23, 2018, including the Written Opinion of the International Searching Authority, in connection with corresponding International Application No. PCT/EP2017/051079 (7 pgs.). |
Office Action dated Feb. 25, 2019 in corresponding Chinese Application No. 201780010840.8 including partial machine-generated English language translation; 9 pages. |
Examination Report dated Aug. 22, 2019, in corresponding European Application No. 17 702 022.9 including partial machine-generated English language translation; 9 pages. |
Office Action dated Aug. 9, 2019, in corresponding German Application No. 10 2016 001 592.6 including partial machine-generated English language translation; 13 pages. |
Chinese Office Action dated Sep. 12, 2019, in connection with corresponding CN Application No. 201780010840.8 (13 pgs., including machine-generated English translation). |
Number | Date | Country | |
---|---|---|---|
20190039651 A1 | Feb 2019 | US |