1. Field of the Invention
The present invention relates to a method for injecting fuel into a multi-cylinder internal combustion engine.
2. Description of the Prior Art
When starting a gasoline engine, it is known to supply each of the cylinders once with what is known as a pilot injection in order to wet the cylinder walls and simultaneously provide an ignitable mixture for the first combustion. Since at this point in time the camshaft and the crankshaft are not yet synchronized and the position of the pistons is unknown, a selective pilot injection strategy is required in order to minimize the emission of non-combusted fuel and hence the pollutant emissions during the start.
In a method known from EP 0 371 158 B1, the cylinders are divided into a first and a second cylinder group according to the two different levels of the camshaft signal. The cylinders of the first group are supplied simultaneously with the pilot injections immediately after a start detection (group injection), while the cylinders of the second group are supplied with the pilot injections with a time delay, and in fact either in a preset sequence or in a normal sequential sequence depending on whether camshaft and crankshaft have already been synchronized.
It has now proved that in this method, in 50% of all starts, not all pilot injections for the cylinders of the first group reach combustion, since some of the pilot injections coincide with an open inlet valve or an inlet valve that is just closing, depending on the stationary position of the internal combustion engine and the position of the inlet valves. Such a situation should be avoided, bearing in mind the increasingly strict statutory regulations on exhaust emissions. An excess fuel emission of this type could be avoided by not releasing the pilot injections until the exact position and relationship between crankshaft and camshaft are known, so that then a “sequential start” might be performed. The result would be a delayed start, however.
The object of the present invention is to define a method for injecting fuel into a multi-cylinder internal combustion engine that enables an emission-optimized quick start of the internal combustion engine.
The method according to the invention for injecting fuel is directed to a multi-cylinder internal combustion engine having a crankshaft, a plurality of cylinders, at least one injection valve for each of the plural cylinders, inlet valves for said plural cylinder, a camshaft for operating the inlet valves, the camshaft rotating at half the speed of the crankshaft, a camshaft sensor generating a periodic camshaft signal, a crankshaft sensor genera a crankshaft signal representing a crankshaft angle and containing a synchronization pulse per crankshaft revolution, and a central control unit controlling the injection valves such that the injection valves inject one pilot injection into each of said plural cylinders during a starting phase and the injection valves inject amounts of fuel determined by central control unit in a normal sequential injection mode. The internal combustion engine comes to a stop, after being turned off with the clutch disengaged, at one of a number of discrete stationary angle positions equal to the number of cylinders. The method includes the steps of saving the discrete stationary angle positions in the central control unit, and supplying the cylinders with the pilot injections one after the other in response to the camshaft signal and the saved discrete stationary angle positions.
The present invention is based on the finding that an internal combustion engine always comes to a stop at specific discrete positions after switching off with the clutch disengaged, where the number of discrete positions over two crankshaft revolutions (760°) always equals the number of cylinders. In the case of n cylinders this is thus n stationary angle positions.
When the internal combustion engine is started, these n stationary angle positions are initially unknown. Using the camshaft signal, however, the number of unknown stationary angle positions can be reduced to n/2. Hence in the method according to the invention, depending on the camshaft signal and the saved stationary angle positions, one cylinder can be selected as the first to be supplied with a pilot injection, while the remaining pilot injections are released later. Unlike the known method described above, the first cylinders are thus not supplied simultaneously with the pilot injections, but always delayed in time relative to each other.
Preferably, depending on the camshaft signal, which enables each cycle to be divided into two segments corresponding to two consecutive crankshaft revolutions, the stationary angle positions are divided into two groups, and that group containing the current stationary angle position at which the internal combustion engine has stopped is determined. Advantageously, only that cylinder of the first group whose inlet valve on discharge of the first pilot injection is definitely closed or at least predominantly closed, is the first supplied with a pilot injection.
In order to determine the sequence of the next pilot injections, the angle separation between the angle position at which the first pilot injection is discharged and the angle position of the first synchronization pulse is advantageously compared with the angle separation between two adjacent saved stationary angle positions, and the sequence of the next pilot injections determined as a function of this comparison.
The method according to the invention ensures that all pilot injections are actually involved in the combustion, so that the fuel emissions, in particular the HC emissions, fall to the level of a sequential start. Early fuel injection is still possible, however, so that the method according to the invention enables a faster start compared with a sequential start procedure.
The method according to the invention is described in more detail with reference to the drawings, in which:
In the usual way, a central electronic control device 1 controlling the ignition, fuel injection and other processes of the internal combustion engine is assigned to the internal combustion engine 3. At least one inlet valve 6 and at least one injection valve 2 are assigned to each cylinder 7. The injection valve 2 injects fuel into the suction pipe immediately in front of or onto the valve disk of the inlet valve 6.
The crankshaft 8 is assigned a crankshaft sensor 4 having a toothed encoder wheel that generates a crankshaft signal CRK (see lower half of
The crankshaft signal CRK, the camshaft signal CAM and the rotational speed N of the internal combustion engine are each plotted over time in the lower half of
The camshaft signal can also take other pulse and level shapes; it should be ensured, however, that the camshaft signal enables every cycle to be divided into two segments (of 360°) corresponding to two consecutive crankshaft revolutions (720°).
During normal operation of the internal combustion engine, the injection valves 2 can thus be controlled and operated in the usual sequential injection mode using the crankshaft signal and the camshaft. At starting, however, the crankshaft position, and hence the position of the pistons, is still not known, and the camshaft and crankshaft may also not be synchronized yet. Injection in sequential injection mode is hence not possible.
Tests have now shown that an internal combustion engine always comes to a stop at discrete positions after switching off with the clutch disengaged. In a four-cylinder internal combustion engine these are precisely four positions over every 760° rotation of the crankshaft. For the toothed encoder wheel of the crankshaft sensor 4, the resultant positions are always, for example, either 20 (±7) teeth or 50 (±7) teeth before a synchronization pulse S. The angle separation between these positions thus equals 180° (±42°). In a similar way, for a six-cylinder internal combustion engine, the resultant positions for the toothed encoder wheel of the crankshaft sensor are e.g. 5 or 25 or 45 teeth before the next synchronization pulse S; the angle separation between the positions then equals 120°. As a general rule, the number of stationary angle positions at which the internal combustion engine comes to a stop equals the number of cylinders. Furthermore, it has proven that as the number of cylinders increases, the stationary angle positions become more discrete.
The facts described above are exploited in the method according to the invention to develop an optimum strategy for the discharge of pilot injections during the starting phase. This pilot injection strategy is explained first with reference to FIG. 2.
In the lower half of
As indicated in
In the previously known method described in the introduction, the two cylinders 3, 4 of the first cylinder group are supplied simultaneously with the pilot injections in a preset angle separation from the start detection E (for example after eight detected and valid teeth of the crankshaft sensor), as indicated by the pilot injections I3′ and I4′. In this case, however, the pilot injection I3′ would be discharged shortly before closure of the associated inlet valve EV3, which would lead to the fuel-air mixture being too rich and to the emission of non-combusted fuel.
Thus, according to the method according to the invention, after the start detection E, only that cylinder whose inlet valve is definitely closed or predominantly closed is supplied with the pilot injection; in the example of
As already mentioned, at the time of the discharge of the first pilot injection I4 it is not yet known whether the internal combustion engine has come to a stop in the first or second stationary angle position (e.g. 50 or 20 teeth before the first synchronization pulse S). In the example of
As can be seen from the graph in
The graph in
Number | Date | Country | Kind |
---|---|---|---|
100 56 862 | Nov 2000 | DE | national |
This is a U.S. national stage of application No. PCT/DE01/04313, filed on Nov. 15, 2001. Priority is claimed on that application and on the following application: Country: Germany, Application No.: 100 56 862.9, Filed: Nov. 16, 2000.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTDE01/04313 | 11/15/2001 | WO | 00 | 5/16/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0240847 | 5/23/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4998522 | Achleitner | Mar 1991 | A |
5140955 | Sono et al. | Aug 1992 | A |
5450829 | Beck | Sep 1995 | A |
5595161 | Ott et al. | Jan 1997 | A |
6032640 | Evans | Mar 2000 | A |
6213089 | Cheng | Apr 2001 | B1 |
6612292 | Shirakawa | Sep 2003 | B1 |
Number | Date | Country |
---|---|---|
197 41 966 | Apr 1999 | DE |
0 371 158 | Jun 1990 | EP |
60069247 | Apr 1985 | JP |
Number | Date | Country | |
---|---|---|---|
20040020472 A1 | Feb 2004 | US |