The present invention relates to a method as well as a device for the installation of guide rails in an elevator shaft.
Guide rails are means for guidance of the elevator car or the counterweight within an elevator shaft. The guide rails enable a controlled vertical movement through acceptance of horizontal forces. The elevator car or the counterweight is connected with the guide rails by wheels or slide parts which are fastened to, for example, the sides of the elevator car or the counterweight. Several lines of guide rails can also be present depending on the respective size and use of the elevator. The counterweight can, since normally no horizontal forces occur, also be guided by guide rails in the form of an enclosure.
The installation of guide rails in an elevator shaft is, due to the length and weight of the individual elements, a time-intensive and difficult operation which is usually carried out in small increments. The transport of the individual guide rail elements within the elevator shaft to an intended location usually takes place with the help of a mounting platform. In that case each element usually has to be brought from the ground floor to its intended location in the elevator shaft.
JP 05178561A discloses a method in which several guide rails can be drawn into the elevator shaft in one working step. The individual guide rails are in that case connected together by way of couplings, which each consist of a joint, and pulled up in the elevator shaft. Each coupling then bears the weight of the all guide rails and couplings hanging thereunder.
An object of the present invention is to make available a device and a method for more efficient installation of guide rails in an elevator shaft.
The present invention teaches a method and a device for installing guide rails in an elevator shaft. In that case, several guide rails are each mechanically fastened by at least one coupling element to a common support means. The guide rails lined up one after the other at the common support means as a composite are conveyed by conveying means into the elevator shaft. In that case the guide rails hanging one after the other individually at the support means adopt a substantially vertical position during pulling up of the support means in the elevator shaft.
This has the advantage that a plurality of guide rails or all guide rails of a line can be drawn into the elevator shaft in one working step. Through connection of the individual guide rails with the support means the guide rails can be pulled up in the elevator shaft in one working step by one person with the help of the conveying means (for example a block and tackle and/or motor). It is also conceivable that the guide rails hanging at the support means are introduced into the elevator shaft from above by a hoisting device independent of the elevator shaft, such as, for example, a building crane. Costs for the mounting of the guide rails in an elevator shaft can thereby be reduced.
Advantageously the guide rails are fastened to the common support means prior to delivery. This has the advantage that the risk of mixing up the different types of guide rails at the installation location of the guide rails in the elevator shaft is diminished. Through fixing the succession of individual guide rails in the elevator shaft prior to delivery the guide rails can be supplied with elements such as, for example, sensors already pre-installed and/or integrated in the guide rails.
According to another embodiment of the present invention the guide rails can be fastened to the common support means also after delivery. The fastening can in that case be carried out in preparation in that the support means is connected by means of the coupling elements with the guide rails lying on a stack or the guide rails are fastened to the common support means during pulling up of the support means in the elevator shaft. This has the advantage that the guide rails can be handled individually. The assembly personnel can in that case decide on site how many guide rail elements are to be drawn into the elevator shaft in one working step and in which sequence.
Advantageously the guide rails are drawn into the elevator shaft by conveying means. Preferably conveying means (motor, deflecting roller, block-and-tackle) fastened to the shaft ceiling are used for this purpose. This has the advantage that the guide rails at the common support means can be drawn into the elevator shaft by one person with little expenditure of force. As mentioned, external conveying means (for example, a building crane) can also be used.
Advantageously, mounting of the guide rails in the lower region of the elevator shaft is begun. After installation of the first guide rails a mounting platform (for example, the elevator car or a part of the same) can be introduced into the elevator shaft and displaced upwardly so that further guide rails of the composite can be mounted. This has the advantage that a mounting platform serving for installation of the guide rails can be moved from below in an upward direction along the already mounted guide rails. In that case the guide rails hanging in a vertical position one after the other individually at the support means are fastened in succession. Due to the fact that the guide rails following the mounting step already hang at their approximate position an efficient operation is made possible. The mounting platform is preferably equipped with necessary safety devices which, for example, limit the travel speed of the mounting platform, prevent crashing down of the same or in the case of need can also be used for arresting the mounting platform.
Advantageously at least a part of the guide rails to be used—for example all guide rails of a mounting section—are suspended with the help of the support means in the elevator shaft before mounting of the guide rails at the shaft wall is commenced. This has the advantage that individual guide rail elements do not have to be picked up each time at a storage location, for example at the ground floor. A mounting section can contain all guide rails of a line or it can contain a part of the guide rails of a line. In addition, it is possible to mount more than one mounting section of the elevator car or more than one mounting section of the counterweight at the shaft wall in one working step.
Advantageously the coupling elements and the support means are removed after mounting of the guide rails on the shaft wall. This has the advantage that the coupling elements and the support means can be used several times.
Advantageously the device for installation of the guide rails in the elevator shaft comprises means enabling installation of guide rails for the elevator car and/or guide rails for the counterweight. This has the advantage that not only the guide rails for the elevator car, but also the guide rails for the counterweight can be efficiently mounted in the elevator shaft. Working steps which are similar in each instance can then be routinely executed with identical tools.
An embodiment of the support means according to the present invention in which the coupling elements are already premounted on the guide means at a suitable spacing is particularly preferred. This has the advantage that the guide rails only still have to be connected with the support means by means of the coupling elements, which takes place quickly and is simple.
Advantageously the support means is a cable or a chain, the length of which amounts to a multiple of a guide rail. This has the advantage that several guide rails can be drawn into the elevator shaft in one working step at the non-rigid support means. Due to the fact that the length of the support means is a multiple of the guide rails several guide rails can be drawn into the elevator shaft as a unit and in succession in one working step.
The above, as well as other, advantages of the present invention will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment when considered in the light of the accompanying drawings in which:
a is a schematic elevation view similar to
Guide rails 10 make it possible to hold the elevator car (not shown) in the region of a predetermined horizontal sectional area of the elevator shaft 1. The wheels or slide parts, which are fastened to the outer side of the elevator car, roll or slide along the guide rails 10. Forces with horizontal force vectors arise due to the usually asymmetrical loading of the elevator car. These forces are transmitted by the wheels or the slide parts to the guide rails 10. The guide rails 10 typically consist of individual elements which are approximately of two and one half to five meters in length and which are lined up to form lines. Several lines for guidance of the elevator in the shaft 1 can also be present depending on the respective size, weight and use of the elevator.
A counterweight (not shown) which similarly moves up and down in the elevator shaft 1 is usually guided by the guide rails 10 similarly by means of wheels or slide parts. Since in the case of the counterweight no large asymmetrical loads arise, the guide rails 10 are known which merely enclose the counterweight as a boundary frame and thereby prevent larger horizontal movements of the counterweight.
In order to draw the individual elements of the guide rails 10 into the elevator shaft 1 use is made, according to the present invention, of a common support means 13. The common support means 13 is drawn into the elevator shaft 1 by a conveying means 11 (for example, a deflecting roller, a block-and-tackle or a motor, or a suitable combination of these components), which advantageously are fastened to a shaft ceiling 12. It is also conceivable for the guide rails 10 hanging at the support means 13 to be introduced into the elevator shaft 1 by a lifting device, such as, for example, a building crane, arranged at a distance from the elevator shaft 1.
Depending on the respective conveying means 11 used for drawing in the support means 13 the support means 13 should amount to a multiple of a vertical length L of the elevator shaft 1. Thus, for example, in the case of use of a deflecting roller as the conveying means 11 the support means 13 should have at least three times the length L of the elevator shaft 1. Twice the elevator shaft length L is needed in order to be able to install the support means 13 unloaded. At a third of the elevator shaft length L of the support means 13 the guide rails 10 are mounted.
The support means 13 itself can be realized in various forms. Thus, for example, it can be a rope, cable, chain or belt. In addition, a variety of materials are conceivable for the material from which the support means 13 is made. For example, the support means 13 can be made of iron, steel, plastic material or natural fibers. It can also be a combination of different materials.
Different embodiments are possible for a plurality of coupling elements 14 according to the present invention. The coupling elements 14 in that case have to be designed so that they can reliably connect and bear the weight of one of the guide rails 10 with the support means 13. It is then to be observed that separation of the connection and thus removal of the coupling element 14 from the guide rail 10 should be possible with the smallest amount of effort after mounting of the guide rails 10 in the elevator shaft 1. Advantageously, the coupling element 14 can also be reusable.
The support means 13 is preferably supplied with premounted coupling elements 14. The coupling elements 14 can be fixedly mounted on the support means 13 or be demountable.
The term “assembly personnel” is used in the present context to describe persons who mount an elevator installation in the elevator shaft 1 and/or prepare it for mounting in the elevator shaft 1. The elevator installation is assembled from the supplied means. In that case the guide rails 10 are mounted in the elevator shaft 1, the elevator car installed, connections for operation of the elevator undertaken, etc. The assembly personnel can be composed of expert workers and/or auxiliary persons.
The mounting platform 15 is preferably the elevator car itself (shown in
Mounting of the guide rails 10 takes place at their intended location. Depending on the respective kind of guide rails 10 not only the line, but also the position within the line for an individual element is predetermined for the individual elements. Through the lining up of the guide rails 10 at the support means 13 the association of the guide rails 10 can be established in more agreeable working conditions than in a confined and dark elevator shaft 1. The risk of confusion of the different types of guide rails 10 and the risk of individual guide elements being mounted at an incorrect intended location are thus reduced.
The means required for mounting of an elevator are introduced into the elevator shaft 1 from at least one storage location 3. The storage location 3 is preferably disposed at the ground floor of the elevator shaft 1, because the means required for the elevator can usually be delivered particularly easily to the ground floor. However, it is also conceivable for further storage locations 3 to be added at higher or lower floors 2.
An assembly with several guide rails 10 is shown in
The coupling elements 14 can, as shown in
The support means 13 is preferably a solid steel cable. A galvanized embodiment of the support means 13 is particularly preferred.
An eye 15 or the like can be provided at the upper end of the support means 13 in order to be able to connect the support means with the conveying means 11.
A spacing A between two of the guide rails 10 hanging in succession at the support means preferably amounts to between five millimeters and one hundred millimeters. Damage of the guide rail ends is thereby precluded, since they do not hit against one another.
A length of the run 14.2 between two hundred millimeters and one thousand millimeters has proved appropriate in order to impart to the coupling element according to
A further embodiment of a coupling element 14′ is shown in
A further embodiment of the invention is indicated in
Advantageous combinations are possible; thus, for example, a part region of the guide rails, for example a first or the lowermost guide rail 10 of a line, can be mounted in a known conventional manner and the remaining rails can be drawn into the shaft by means of the common support means 13. This has the advantage that a mounting platform where applicable can be mounted directly after mounting of the lowermost guide rails.
In accordance with the provisions of the patent statutes, the present invention has been described in what is considered to represent its preferred embodiment. However, it should be noted that the invention can be practiced otherwise than as specifically illustrated and described without departing from its spirit or scope.
Number | Date | Country | Kind |
---|---|---|---|
05103475 | Apr 2005 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3500494 | Kopp et al. | Mar 1970 | A |
3851736 | Westlake et al. | Dec 1974 | A |
4345671 | Tosado et al. | Aug 1982 | A |
4944387 | Burke | Jul 1990 | A |
Number | Date | Country |
---|---|---|
2059331 | Mar 1978 | DE |
1321291 | Dec 1989 | JP |
4066485 | Mar 1992 | JP |
6255943 | Sep 1994 | JP |
0546305 | Sep 2006 | NZ |
WO 9829325 | Jul 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20060243539 A1 | Nov 2006 | US |