Method for installing and removing slack from a web of cleaning material in an electrophotographic machine

Information

  • Patent Grant
  • 6725008
  • Patent Number
    6,725,008
  • Date Filed
    Wednesday, May 28, 2003
    21 years ago
  • Date Issued
    Tuesday, April 20, 2004
    20 years ago
Abstract
An apparatus and method for taking up the slack in the web material between the supply roller and the take-up roller in the web cleaning assembly of an electrophotographic apparatus. A clutch mechanism is positioned between the drive gear on the take-up roller and the hub of the motor that drives the drive gear. A spring-biased pawl on the hub engages a tooth of an inner gear on the drive gear to provide a driving connection between the hub and the take-up gear when the motor drives the hub in a first direction but effectively releases the driving connection when the take-up gear is manually rotated while the motor is idle. This allows the take-up roller to be rotated to take up the slack in the web without having to rotate the motor.
Description




FIELD OF THE INVENTION




The present invention relates to a mechanism for taking up the slack in a web of cleaning material when changing supply and take-up rollers in a fuser section of an electrophotographic copier/printer machine and in one of its aspects relates to a clutch mechanism which allows the take-up roller of a web cleaning assembly to be advanced without actuation of the drive motor whereby any slack in the web between the supply roller and the take-up roller can be removed manually before the machine is put into operation.




BACKGROUND OF THE INVENTION




In a typical electrophotographic machine (e.g. copier, duplicator, printer, etc.), a continuous loop of photoconductor film is commonly used to transfer an image from an input section onto a receiving medium (e.g. a sheet of paper or the like). The film is charged and passed through an input section where an image (i.e. analog or digital) is projected onto the charged film. The film then moves through a developing section where toner is applied to the charged image before the image is transferred to the sheet of paper. The paper is subsequently passed through a fuser section where the toner is fixed to the paper by passing the paper between two rollers, i.e. a pressure roller and a fuser roller, one of which is heated. For example, it is common to heat the fuser roller by positioning the fuser roller in contact with one or more heater rollers, which in turn, transfer heat to the fuser roller.




A known problem in fuser sections of this type is that known as “offset” which occurs when some of the heat-softened toner particles remain on the fuser roller and are not transferred to the paper as desired. As well understood in the art, this offset can severely affect the quality of the copies being made by the machine. To alleviate this problem, a release oil is typically applied onto the fuser roller to prevent the toner from sticking thereto.




Due to the direct contact between the fuser roller and the heater rollers, the heater rollers also effectively act as cleaning rollers in that they pick up excess release oil along with other contaminants, e.g. residual toner, paper dust, etc., from the fuser roller. In turn, these contaminants must be continuously removed from the heater rollers during the copying operation in order to maintain high quality copies from the machine. Accordingly, most machines of this type now include some means for continuously “cleaning” these contaminants off of the heater rollers during the copying operation.




One known way to clean the heater rollers is to provide a “web cleaning” assembly within the fuser section which includes a length or “web” of cleaning material (i.e. woven material such as NOMEX). The web is wound onto a supply roller which is removably positioned within the assembly and continuously contacts and “wipes” the contaminants off of the heater rollers as the web is pulled onto a take-up roller which, in turn, is rotated through a set of gears by a drive motor. Since the web material is regularly advanced during the copying operation, the web material on the supply roller will eventually run out and will need to be replaced. That is, both the empty supply roller and the full take-up roller will need to be replaced whenever the supply of web material runs out.




Since these rollers will need to be replaced on a relatively frequent basis, the procedure for changing out the rollers should be as easy and as mistake proof as possible. Preferably, this should be simple enough so that an operator of the machine, vis-à-vis a dedicated service technician, can be given minimal training to perform this task as needed thereby averting a service call each time the web material runs out.




In known machines of this type, the supply and take-up rollers are normally replaced by pulling the web cleaning assembly out from the fuser housing on a slide rail mounted therein. A spring-loaded pin is released at one end of the take-up roller that is then lifted off a pin at the other end. Once one roller (e.g. full take-up roller) is free, the other roller (e.g. empty supply roller) is removed in a similar manner and the respective rollers are replaced by reversing this procedure.




Whenever the supply and take-up rollers are replaced, a certain amount of “slack” will remain in the web after the web has been properly “threaded” through its operational path in the cleaning assembly (i.e. from the supply roller, around a tensioning roller and into contact with the heater rollers, and onto the take-up roller). As will be understood in this art, removing this slack after the rollers have been installed is normally difficult to accomplish. If this slack is not removed before the machine is put back into operation, the slackened web can be drawn into the heater rollers which, in turn, is likely to tear the web off of one or the other of the rollers thereby resulting in substantial downtime and expense.




In known machines of this type, this slack is removed from the web by manually rotating the take-up roller to thereby wind up the excess web onto the take-up roller. However, this procedure requires that the drive shaft of the drive motor be manually rotated along with the associated meshed gears which drive the take-up roller. Since the commercially available drive motors commonly used in these machines normally have high gear ratios (i.e. 180 to 1), the manual turning of the motor is extremely difficult to accomplish with the tools normally available to a technician. Accordingly, those skilled in this art will readily recognize the benefits of simplifying the exchange of web supply and take-up rollers in a web cleaning assembly of an electrophotographic machine wherein the slack normally present in the web after such an exchange can easily and quickly be removed by a technician without the need of special tools or assistance.




SUMMARY OF THE INVENTION




The present invention provides an electrophotographic apparatus having a fuser section which includes a web cleaning assembly and a method for servicing the web cleaning assembly to take-up the slack in the web cleaning material when the supply and take-up rollers are replaced therein. Basically, a clutch mechanism is positioned between the drive gear on the take-up roller and the hub on the drive shaft of the motor which drives the drive gear. A spring-biased pawl on the hub cooperates with an inner set of teeth on the drive gear to provide a driving connection between the hub and the take-up gear when the motor drives the hub in a first direction but effectively releases the driving connection when the take-up gear is manually rotated while the motor is idle. This allows the take-up roller to be rotated to take up the slack in the web without having to rotate the drive shaft of the motor.




More specifically, the present invention relates to a web cleaning assembly which is adapted to be mounted in the fuser section of an electrophotographic apparatus for cleaning contaminates off of at least one heater roller in the fuser section. The web cleaning assembly includes a frame having a supply roller on which a web of cleaning material is wound and a take-up roller that receives the used cleaning material after the material has contacted and removed contaminants from the heater roller(s) in the fuser section of the apparatus.




A drive gear is drivingly connected to the take-up roller and has a set of outer teeth around its circumference and a set of inner teeth around a central bore therethrough. The central bore is positioned onto a hub, which in turn, is drivingly connected onto the drive shaft of a motor. The hub has a slot in which a pawl is pivotably mounted, the outer end of which is biased outwardly by a spring or the like. The outer end of the pawl engages one of the inner teeth to form a driving connection between the hub and the drive gear wherever the motor drives the hub in a first direction.




A handle extends across the outside of the drive gear and is secured thereto by bolts or the like by which the drive gear can be manually rotated while the motor is idle and the hub is stationary. Since the outer teeth on the drive gear are meshed with the teeth on the take-up gear, the take-up roller can be rotated and any slack in the web material can be taken-up by merely turning the handle on the drive gear without having to turn the drive shaft of the motor. This highly simplifies the removal and installation of the supply and take-up rollers in the web cleaning assembly since the high gear ratio (e.g. 180 to 1) normally found in motors of this type makes the manual turning of motor and associated gears difficult.











BRIEF DESCRIPTION OF THE DRAWINGS




The actual construction operation, and apparent advantages of the present invention will be better understood by referring to the drawings, not necessarily to scale, in which like numerals identify like parts and in which:





FIG. 1

is a schematic view of an electrophotographic apparatus (e.g. copier/printer machine) in which the present invention can be incorporated;





FIG. 2

is an end view of a fuser section such as that lying within line


2





2


of

FIG. 1

having the web cleaning assembly of the present invention incorporated thereon;





FIG. 3

is a perspective view of the web cleaning assembly of

FIG. 2

when removed from the fuser section;





FIG. 4

is an end view of the web cleaning assembly of

FIG. 3

;





FIG. 5

is an enlarged, side view of the drive gear for the take-up roller of the web cleaning assembly of FIG.


3


and the clutch mechanism of the present invention;





FIG. 6

is an enlarged, cross-sectional view of the hub for the drive motor of clutch mechanism of

FIG. 5

; and





FIG. 7

is a sectional view of the hub for the drive motor taken along lines


7





7


of FIG.


6


.











While the invention will be described in connection with its preferred embodiments, it will be understood that this invention is not limited thereto. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalents that may be included within the spirit and scope of the invention, as defined by the appended claims.




DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring briefly to

FIG. 1

, illustrated is a typical electrophotographic apparatus or machine


10


(e.g. copier, duplicator, printer) of the kind that has an endless photoconductor member


11


(e.g. photographic film) which moves through a closed loop past a charging station


12


, an exposure or input station


13


, a developing station


14


, a transfer station


15


, and an erase section


16


. A copy medium (e.g. a sheet S of paper) is fed from a supply (not shown) through transfer station


15


where the toner image on the film


11


is transferred onto the paper S. The paper S is then fed between a heated, fuser roller


21


and a pressure roller


22


in fuser section


20


to fix the toner image on the paper S.





FIG. 2

is a end perspective view of a typical fuser section


20


which might be found in the electrophotographic machine


10


of FIG.


1


. As illustrated, fuser section


20


is comprised of a frame or housing


25


in which pressure roller


22


, fuser roller


21


, and two heating rollers


23


are rotatably mounted. As will be understood in the art, a motor (not shown) mounted on the housing


25


rotates pressure roller


22


, which in turn, rotates fuser roller


21


through the frictional contact therebetween. Fuser roller


21


is heated by heating rollers


23


so that when the sheet of paper S or the like passes through the nip between rollers


21


,


22


, the heat and pressure exerted thereby will cause the toner carried on S to become fused on the paper.




However, in fusers of this type, some of the toner particles are likely to adhere to fuser roller (i.e. “toner offset”) which can severely affect the quality of the copies being made. To alleviate this problem, a wick roller assembly


24


is positioned within housing


25


and includes a wick roller


24




a


for applying a “release” oil directly onto fuser roller


21


. This oil helps to prevent “offset”, i.e. prevents toner from sticking to the fuser roller. Unfortunately, excess oil along with residual toner, paper dust, etc., may build-up on the fuser roller and be transferred to And contaminate heater rollers


23


. If these contaminants are not removed from the heater rollers, they quickly affect the quality of the copies being made by the machine.




To remove these contaminants, a web cleaning assembly


30


is provided within fuser housing


25


which includes a web


31


of material which contacts the heater rollers


23


to “wipe” and remove the contaminants therefrom as the copying operation is being carried out. As is known in the art, web


31


may be comprised of any flexible, cleaning material which is capable of removing the contaminants from the heater rollers upon contact (e.g. woven cloth-like material such as NOMEX*) without damaging the heater rollers. The cleaning material


31


is wound onto supply roller


32


and passes over tensioner roller


33


and onto take-up roller


34


. Tensioner roller


33


holds material in contact with both of heater rollers


23


when assembly


30


is in its operable position (

FIGS. 2 and 4

) within fuser housing


25


.




Since the cleaning material of web


31


is continuously advanced during the copying operation, the web of cleaning material will eventually run out and will have to be replaced on a routine basis. To facilitate this, web cleaning assembly


30


is comprised of a frame


35


which can be slid out of and into fuser section


20


on a telescoping slide


42


which, in turn, is mounted in the fuser housing


25


. Supply roller


32


and take-up roller


34


are releasably secured for rotation within frame


35


. Preferably, a first end of each roller (i.e. the end of the axle, not shown, of each roller) slidably fits into a respective first journal box which, in turn, is mounted in frame


35


. The first journal box for the take-up roller


34


has a gear


38


secured to its outer end which, in turn, is driven by a gear


39


on motor


40


(

FIG. 3

) as will be explained in more detail below.




The other or second end of each roller axis is slidably positioned within a respective, second journal box (not shown), which in turn, is slidably or retractably mounted in the frame


35


. When changing rollers, the second journal boxes are moved to a retracted position to release a respective roller for removal. This procedure is reversed when installing a new respective roller. For additional details of such a web cleaning assembly, see co-pending and commonly assigned U.S. patent application Ser. No. 09/775,171, filed Feb. 1, 2001.




When the supply of web material


31


on supply roller


32


has been exhausted, assembly


30


is pulled forward until it clears fuser housing


25


. Both the empty supply roller and the now-full take-up roller are removed and replaced with a full supply roller


32


and an empty take-up roller


34


. Unfortunately, when the rollers are exchanged, a certain amount of slack (e.g.


31




s


in

FIG. 4

) normally occurs in the web material


31


as it is threaded along its operation path through housing


35


between supply roller


32


, over tensioner roller


33


, and onto take-up roller


34


. If this slack is not removed before the machine is started, the web


31


can be pulled into the heater rollers


23


and be torn off of either the supply or take-up roller. As will be readily recognized by those skilled in this art, this can lead to considerable downtime and expense before copying can be resumed.




Previously, in known machines of this type, after the rollers have been exchanged, a small sheet metal handle (not shown) is used to rotate the drive gear on the drive motor


40


in a counterclockwise direction (

FIG. 4

) to remove the slack


31


s from web


31


. However, since a typical drive motor has a very high gear ratio (e.g. 180 to 1), it is difficult for the technician to manually turn the drive gear while it is in engagement with the motor.




In accordance with the present invention, a mechanism is provided in the web cleaning assembly


30


that allows a technician to easily take-up the unwanted slack from the web


31


after the supply and take-up rollers have been exchanged in housing


35


. Basically, the present invention is comprised of a clutch mechanism


45


, which cooperates between the drive shaft


41


of drive motor


40


and drive gear


39


for take-up roller


34


which allows the drive gear


39


to rotate relative to the drive motor even when the gears are otherwise engaged.




More specifically, clutch mechanism


45


is comprised of a hub


46


(

FIGS. 6 and 7

) which has a central D-shaped opening


47


which, in turn, is adapted to be positioned on the drive shaft


41


of drive motor


40


. Hub


46


has a slot


48


provided therethrough, the outer surface of which is open along a portion of the circumference of the hub. Pawl


50


is pivotably mounted in slot


48


by pin


49


or the like. A compression spring


53


or the like biases the outer or forward end


51


of pawl


50


outwardly from hub


46


while the inner or rearward end


52


of pawl


50


abuts the inner surface


48




a


of slot


48


to limit rotation of the pawl within the slot. Spring


53


is preferably held in place within and between recesses


55


and


56


in hub


46


and pawl


50


, respectively. When the pawl


50


is properly secured in slot


48


, its forward end


51


will protrude from the slot to a point outside the circumference of hub


46


for a purpose described below.




Drive gear


39


has an outer set of teeth


39




a


which is adapted to mesh with the teeth on gear


38


on take-up roller


34


whereby when drive gear


39


is rotated in a clockwise direction (FIG.


4


), take-up roller


34


will be rotated in a counterclockwise direction. Also, drive gear


39


has an inner set of teeth


39




b


, which are formed around the circumference of a central bore


39




c


, which in turn, passes through the center of drive gear


39


. Preferably, the number of inner teeth


39




b


is small in comparison with the outer number of tooth


39




a


so as to provide a good mechanical advantage between the two. For example, the set of inner teeth


39




b


can be comprised of 10 teeth set at a radial angle of about 36° from each other. Preferably, the leading edge of each tooth


39




b


is inclined forward with respect to the radius of drive gear


39


at a drive angle “a” (e.g. about 10°, see

FIG. 5

) for a purpose to be described below. A diametrically-extending handle


55




a


extends across the outside of drive gear


39


and is connected thereto by any appropriate means, e.g. bolts


57


(

FIG. 4

) which are threaded into holes


57




a


on gear


39


(FIG.


5


).




Drive gear


39


is assembled onto hub


46


, which in turn, is drivingly connected to the drive shaft


41


of drive motor


40


. When clutch mechanism


45


is fully assembled, the outer or forward end


51


of pawl


50


will be biased outwardly and will extend outward from slot


48


and into contact with the inclined, leading edge of a respective inner teeth


39




b


to thereby form a positive, driving connection therebetween whenever hub


46


is rotated in a clockwise direction (as viewed in

FIG. 4

) by motor


40


; this being the case during normal operation of the copying machine


10


.




When the supply roller


32


and take-up roller


34


need to be changed, web cleaning assembly


30


is slid out of the fuser housing and the rollers are replaced. As mentioned above, there will normally be a certain amount of slack


31


s in web


31


after the new rollers have been installed which, if not removed, can lead to serious problems. To remove this slack, drive gear


39


is manually rotated by gripping and turning handle


55




a


in a clockwise direction (FIG.


4


). As gear


39


rotates in a forward direction (i.e. clockwise), hub


46


on motor


40


remains stationary causing pawl


50


in the hub to ride up along the ramp of a respective inner tooth


39




b


against the bias of spring


53


.




This allows gear


39


to override the stationary hub


46


in the clockwise direction and rotate relative thereto. Since drive gear


39


remains meshed with gear


38


on take-up roller


34


, the manual rotation of drive gear


39


will also rotate gear


38


in a counterclockwise direction (

FIG. 4

) to thereby take up the slack


31




s


in web


31


. Once the unwanted slack is removed from web


31


, the web cleaning assembly


30


is repositioned within fuser housing


25


and the machine


10


is now ready for operation. Upon the start of operation, drive motor


40


will again rotate drive gear


39


in a clockwise direction since spring


53


will bias the outer edge


51


of pawl


50


into driving engagement with the leading edge of a respective inner tooth


39




b.






It should be evident from the above that any slack, present in the web


31


after the web supply and take-up rollers have been installed, can quickly be removed by manually rotating the drive gear


39


without having to rotate the drive motor, itself. This allows the supply and take-up rollers to be replaced, easily and quickly, by a single, minimally trained serviceperson without the need for any special tools or assistance. This is very important in reducing the costs and the down time normally associated with machines of this type.



Claims
  • 1. A method of taking-up the slack in a web of cleaning material in a web cleaning assembly in an electrophotographic apparatus wherein the web cleaning assembly comprises: a frame; a supply roller rotatably mounted in the frame, the supply roller being adapted to have a web of cleaning material wound thereon; a take-up roller rotatably mounted in the frame, the take-up roller being adapted to receive the web of cleaning material from the supply roller after the cleaning material has been used to clean at least one surface in the electrophotographic apparatus; a take-up gear having a set of gear teeth drivingly connected to the take-up gear for rotating the take-up roller; and, a motor for driving the take-up gear, the method comprising:a) positioning a clutch mechanism on the take-up gear adapted to disengage the take-up gear from the motor to permit rotation of the take-up gear separately from the motor; and, b) rotating the take-up gear separately from the motor to take up slack in the web of cleaning material.
  • 2. The method of claim 1 wherein the take-up gear is manually rotatable to take up slack in the web of cleaning material.
  • 3. The method of claim 1 wherein the at least one surface comprises at least one heater roller in heating contact with a fuser roller.
  • 4. An improvement in a method for installing a web of cleaning material in a web cleaning assembly in an electrophotographic apparatus wherein the web cleaning assembly comprises: a frame; a supply roller rotatably mounted in the frame, the supply roller being adapted to have a web of cleaning material wound thereon; a take-up roller rotatably mounted in the frame, the take-up roller being adapted to receive the web of cleaning material from the supply roller after the cleaning material has been used to clean at least one surface in the electrophotographic apparatus; a take-up gear having a set of gear teeth drivingly connected to the take-up roller for rotating the take-up roller; and, a motor for driving the take-up gear, the method comprising: removing a take-up roller at least partially filled with used web cleaning material; replacing the at least partially filled take-up roller with a replacement take-up roller; removing a depleted supply roller of web cleaning material; replacing the depleted supply roller of web cleaning materials with a replacement roll of web cleaning material; and, positioning the web cleaning material in its operational path in the electrophotographic apparatus, the improvement comprising:a) positioning a clutch mechanism on the take-up gear adapted to disengage the take-up gear from the motor to permit rotation of the take-up gear separately from the motor; and, b) rotating the take-up gear separately from the motor to take up slack in the web of cleaning material.
  • 5. The method of claim 4 wherein the take-up gear is manually rotatable to take up slack in the web of cleaning material.
  • 6. The method of claim 4 wherein the at least one surface comprises at least one heater roller in heating contact with a fuser roller.
  • 7. A method for installing a web of cleaning material in a web cleaning assembly in an electrophotographic apparatus wherein the web cleaning assembly comprises: a frame; a supply roller rotatably mounted in the frame, the supply roller being adapted to have a web of cleaning material wound thereon; a take-up roller rotatably mounted in the frame, the take-up roller being adapted to receive the web of cleaning material from the supply roller after the cleaning material has been used to clean at least one surface in the electrophotographic apparatus; a take-up gear having a set of gear teeth drivingly connected to the take up gear for rotating the take-up roller; and, a motor for driving the take-up roller, the method comprising:a) replacing a take-up roller at least partially filled with used web cleaning material with an empty take-up roller; b) replacing a spent supply roller of web cleaning material with a replacement roller of web cleaning material; c) positioning the web material in its operational path in the electrophotographic apparatus; d) positioning a clutch mechanism on the take-up gear adapted to disengage the take-up gear from the motor to permit rotation of the take-up gear separately from the motor; and, e) rotating the take-up gear separately from the motor to take up slack in the web of cleaning material.
  • 8. The method of claim 7 wherein the take-up gear is manually rotatable to take up slack in the web of cleaning material.
  • 9. The method of claim 7 wherein the at least one surface comprises at least one heater roller in heating contact with a fuser roller.
RELATED APPLICATIONS

This application is a divisional application of U.S. Ser. No. 10/144,581 entitled “Mechanism For Removing Slack In The Web Of Cleaning Material In An Electro-photographic Machine” filed May 13, 2002. U.S. Ser. No. 10/144,581 and this application are entitled to and hereby claims the benefit of U.S. provisional application No. 60 307,217 filed Jul. 20, 2001.

US Referenced Citations (7)
Number Name Date Kind
4110035 Kamata Aug 1978 A
5930574 Segawa Jul 1999 A
6253413 Onuma et al. Jul 2001 B1
6278860 Morganti et al. Aug 2001 B1
6292646 Maul et al. Sep 2001 B1
6305636 Satoh et al. Oct 2001 B1
6618572 Morganti et al. Sep 2003 B2
Foreign Referenced Citations (3)
Number Date Country
07287466 Oct 1995 JP
08095417 Apr 1996 JP
08185074 Jul 1996 JP
Provisional Applications (1)
Number Date Country
60/307217 Jul 2001 US