The field of the invention is borehole pressure isolation and more particularly isolation of a treated section of the borehole so that equipment can be introduced or a procedure performed from a surface location without exposure to isolated formation pressure. A removable barrier allows subsequent production from the formation without milling.
Adaptive supports and devices to deliver them to a groove or a recess in a tubular or in a similar support location between tubulars have been described in U.S. Pat. Nos. 10,287,835 and 10,273,769. Adaptive supports that permit flowback to a surface location or that use bottom hole pressure to position an adaptive support while permitting a ball to push through the adaptive support once seated in a groove are described in U.S. Pat. No. 10,738,563. Preformed grooves in tubulars for whipstock locating when milling a window are illustrated in U.S. Pat. No. 8,505,621.
Electric submersible pumps (ESP) are used to boost pressure to produce a formation and are introduced into the borehole under conditions that isolate the upper segment of the borehole from formation pressure. One way this is done is with kill fluids as described is U.S. Ser. No. 10/072,486. Another way is to use a combination of a formation isolation valve (FIV) to introduce the ESP with borehole pressures below being isolated. The ESP is tagged into a polished bore receptacle (PBR). Mechanisms are provided to operate the FIV to the closed position and to subsequently open the FIV after the ESP is sealingly positioned in the PBR. Such a system is described in U.S. Pat. No. 8,459,362. Such procedures that are described above are expensive from a hardware standpoint and provide some operational uncertainties. Killing the well to introduce the ESP also adversely affects future production from the formation.
What is needed and is addressed by the present invention is equipment and a method to rapidly deploy a barrier to formation pressure after treatment of the formation below. A removable barrier is deployed for such pressure isolation with removal being triggered at a time after the introduction and optionally securing the ESP while formation pressures are isolated. One or more such barriers are contemplated with the first being used to determine effective isolation and another that can be optionally used if additional barriers are desired for any reason. Well fluids or introduced fluids can be used to remove the barrier without milling. An adaptive seat can be advanced into a recess or groove located in a tubular sub or connection between tubulars with a ball or other object such that downhole pressure can propel the object against the adaptive seat and translate the adaptive seat to an anchor location. The extension of the adaptive seat after release into the tubular flow path is minimal so that subsequent milling is not contemplated and production flow is minimally impacted. The object is undermined and passes through the adaptive seat to allow production to commence. The ESP is deployed above the adaptive seat, preferably on coiled tubing. These and other aspects of the method will be explained in greater detail below with the understanding by those skilled in the art that the appended claims define the full scope of the invention.
An adaptive seat is run in with an isolating object to beyond a landing location for the adaptive seat. The adaptive seat is released to expand and engage the surrounding tubular. Pressure from below acts on the object and propels the object against the adaptive seat. The object and the adaptive seat move in the tubular in tandem to a nearby landing location such as a groove or recess in a sub that is part of the string or another location such as a tubular joint where the adaptive seat finds support. An upper portion of the borehole is isolated for a time from formation pressure to allow running in an ESP from the surface. The object is removed by degradation or from being structurally undermined and the ESP is operated to produce the formation. One or more removable barriers are contemplated.
Referring to
As shown in
The casing collar locator 5 senses the position of the bottomhole assembly below the groove or recess 1. The object 2 can be independently dropped into the flowpath 12 or delivered with the bottomhole assembly secured to the delivery tool 3 until released in the
Alternatively, the ESP 8 or any other tool can be run in on wireline with flow from the surface that moves the object 2 away from the adaptive support 6. Doing the procedure with wireline allows introduction of the ESP 8 or any other tool with the lower zone is in effect isolated due to the flow created by applied pressure into the upper zone 16. In that manner tools can be introduced without need for a coiled tubing unit and associated personnel and the expense of such a unit can be avoided. Once the applied pressure is removed the object 2 can be pushed back into sealing contact with the adaptive support 6 secured in groove or recess 1 using lower zone 18 pressure. The ESP 8 is landed in a receptacle and sealingly latched to that receptacle. The ESP 8 is started after the object 2 is compromised in a variety of different ways and the ESP 8 pressurizes the upper zone 16 to initiate production. The need for coiled tubing, particularly in vertical wells, for pump placement is eliminated. Horizontal wells may still require running in the ESP 8 with coiled tubing.
While the method allows a rapid reconfiguration from formation 26 treatment to isolating zone 16 from formation 26 pressure as represented by arrow 7, it also provides an economical formation isolation technique to enable operations in the isolated zone 16 such as running in an ESP. It further provides time to perform operations in zone 16 with an ability to reopen access to formation 26 to facilitate production.
While a single groove or recess 1 is shown, multiples can be used so that one can define isolated zone 18 for a pressure test to make sure that zone 18 is completely isolated. Another groove or recess 1 can be used uphole to act as a backup barrier when running in the ESP 8 or conducting another operation that needs temporary formation 26 isolation. The breakdown in one form or another of the object 2 is accomplished after a suitable time delay to run in the ESP 8 or other equipment. The removal of the object 2, that is preferably spherical, can be controlled by well fluid and material selection for the object 2 or by some form of well intervention such as adding an agent mechanism that will facilitate the removal of the object 2 by mechanical force, chemical attack or dissolution to name a few options. Other procedures in isolated zone 16 can include but are not limited to inflow testing, temporary abandonment, packer installation.
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below:
Number | Name | Date | Kind |
---|---|---|---|
2320670 | Scaramucci | Jun 1943 | A |
2896724 | Baker | Jul 1959 | A |
3213940 | Wood | Oct 1965 | A |
3584645 | Radig | Jun 1971 | A |
3850194 | Brown | Nov 1974 | A |
4171019 | Cole | Oct 1979 | A |
5704426 | Rytlewski | Jan 1998 | A |
6328111 | Bearden | Dec 2001 | B1 |
8459362 | Ceccarelli | Jun 2013 | B2 |
8505621 | Telfer et al. | Aug 2013 | B2 |
8813849 | Davis | Aug 2014 | B1 |
10072486 | Bennett et al. | Sep 2018 | B2 |
10273769 | Crow et al. | Apr 2019 | B2 |
10287835 | Crow et al. | May 2019 | B2 |
10738563 | Crow et al. | Aug 2020 | B2 |
11111747 | Crow | Sep 2021 | B2 |
20020007949 | Tolman | Jan 2002 | A1 |
20120012771 | Korkmaz | Jan 2012 | A1 |
20130037273 | Themig | Feb 2013 | A1 |
20130153220 | Carter | Jun 2013 | A1 |
20170175487 | Marcin | Jun 2017 | A1 |
20170321507 | Crow | Nov 2017 | A1 |
20170321513 | Crow | Nov 2017 | A1 |
20170321514 | Crow | Nov 2017 | A1 |
20170362913 | Randle | Dec 2017 | A1 |
20190234174 | Crow | Aug 2019 | A1 |
20200173249 | Fairweather | Jun 2020 | A1 |
20200347694 | Power | Nov 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20230358110 A1 | Nov 2023 | US |