Beamforming networks, such as a phased-array beamforming network, may require the calibration of the elements of the antenna array. This may involve the removal of any unknown and undesired amplitude and phase offsets between the antenna array elements. For example, in the return link of a Ground-Based Beamforming (GBBF) network of a satellite communication system, calibration may be achieved by having several geographically separated Beacon Transmitters (BT) transmitting calibration beacon signals on each antenna element path and received by a single Measurement Node (MN). Each BT may have good visibility only to a subset of antenna elements. Furthermore each BT may introduce an unknown nuisance perturbation or an offset in the transmitted signal. The objective may be to calibrate all elements of the antenna array based on measurements made at the MN of signals arriving from geographically separated BTs.
Similarly, in the forward link of a Ground-Based Beam Forming (GBBF) network of a satellite communication system, the array calibration may be achieved by a Beacon Transmitter (BT) transmitting, on each antenna element path, a calibration beacon signal which may be received and measured at several geographically separated Measurement Nodes (MN). Each MN may have good visibility only to a subset of antenna elements. Further, measurement at each MN may be affected by an unknown offset plus varying amounts of noise. The objective may be to calibrate all elements of the antenna array based on measurements made locally at each MN.
Other systems in which data from many separate sensors must be coherently combined and compared in order to determine the required system parameters may use parameter estimation. Such systems include, for example, surveying systems, in which many separate measurements may be combined to make a complete measurement, and various wireless sensor networks. The outputs of each MN may be affected by some unknown nuisance parameter, such as, for example, common measurement instrument errors (such as altitude errors that cannot be measured in surveying systems). Other applications for parameter estimation include channel estimation in Distributed MIMO (D-MIMO) architectures, and blind system identification using multiple MNs in scenarios where parameters representing the system under test may be reliably identified using multiple MNs, and where each individual MN may introduce uncertainty in its measurements. This may include estimating possibly complex-valued voltages in an electric circuit using voltage-meters that are not well calibrated.
Parameter estimation may be accomplished using selective daisy chaining, which may include combining the measurement sets. Selective daisy chaining arrives at the estimation of a parameter set, denoted by a vector, by tracing out several of the least-noisy paths in a bipartite network graph of parameters nodes and BT nodes on the return link (or MNs on the forward link), connecting the parameters nodes and the BTs (or MNs). Selective daisy chaining may lack accuracy and robustness to instrument failures, since it may not use all of the available information in all the measurement sets, and may throw away the information not belonging to the selected paths.
An extension of selective daisy chaining include the maximal daisy chain approach, which may be equivalent to a maximum ratio combining scheme, and path search techniques on the graph problems, in which all the possible paths between each pair of the parameter nodes, through all the different BTs (or MNs), may be traced out and combined using a reliability metric of all the measurements encountered along each path. Selective daisy chaining may be computationally complex, and may be an NP-hard problem that becomes unwieldy as the number of the parameters and BTs (or MNs) increases.
A linear least-squares approach to combining the measurement sets (that are collected using either the BTs on the return link or the MNs on the forward link) may also be used for parameter estimation. However, linear least-squares may have a phase ambiguity problem in the context of the parameter estimation problem in the present invention, and therefore may not be used for the estimation of complex-valued channel coefficients. The linear least-squares approach may be feasible only for the linear model of the measurements.
It is an object of the present invention to provide a method for iterative estimation of global parameters.
In accordance with an aspect of the present invention, a method for iterative estimation of a set of unknown channel parameters in a beamforming network includes determining a first order estimate of offsets at measurement nodes and an estimate of the confidence in the initial estimate of the measurement nodes' offsets, and iterating, until a desired estimation accuracy is obtained, determining an improved estimate of a parameter set, and the confidence in the estimates, using the prior estimate of the offsets at the measurement nodes and determining an improved estimate of the offsets at the measurement nodes and the associated confidence values using the prior estimate of the parameter set and the corresponding confidence values.
Additional objects, advantages and novel features of the invention are set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
a depicts an exemplary adjacency diagram for connectivity patterns in a beamforming network;
b depicts an exemplary bipartite diagram for connectivity patterns in a beamforming network;
Beamforming networks may require the estimation of the channel parameters. These parameters may be measured using a set of Beacon Transmitters (BTs) on the return link and Measurement Nodes (MNs) on the forward link. On the return link, the beacon transmission may be from the geographically separated BTs and the beacon reception may be performed at the beamforming network. On the forward link, the beacon transmission may be from the beamforming network and reception may be performed at the geographically separated MNs. Each BT or MN may estimate a local subset of the parameter set, and furthermore, may introduce an unknown nuisance perturbation or an offset in its measurements of the parameter subset. The obtained sets of the local measurements may not be directly used to estimate the entire set of parameters, since the values of each measurement set may be affected by different random nuisance offsets specific to that measurement set. On the forward link, the iterative estimation may begin by using the local measurements of the parameters at an arbitrary MN to estimate the impairment offsets introduced by neighboring MNs. By accounting for the estimated measurement offsets, the parameters may be estimated with greater confidence. The improved estimates of the parameters may then be used to further improve the estimated offsets introduced by the MNs and other impairment sources that are common to an MN, and increase the number of MNs whose offsets are estimated. By performing several such iterations, a global estimate of the entire parameter set may be generated based on the local measurement subsets.
In ground-based beamformer systems, the parameters {c} may represent the complex-valued feederlink channel coefficients that may need to be calibrated at the ground based beamformer 101. The variable set {k} may represent the perturbation effects introduced either by the BTs 107 on the return link or MNs 201 on the forward link in the measurement of the parameters {c}.
In a terrestrial D-MIMO system, the parameters {c} may represent the complex-valued symbols transmitted by several distributed antennas to a user terminal. The variable set {k} may represent the perturbation effects introduced by the Access Nodes' (ANs) signal processing device for estimation of the channel state information (CSI) between the distributed antennas and the user terminal.
In a Wireless Sensor Network (WSN), the parameters {c} may represent a set of unknown parameter of interest that is measured by a distributed network of sensor nodes. The variable set {k} may represent the bias effects local to each sensor node.
In a satellite's GBBF network 101, the beamforming coefficients on satellite antenna element array 105 outputs may be applied in a ground based electronics system 101. The individual array element output may be transferred from the satellite to the GBBF 101 on a forward feederlink channel 104. Frequency division multiplexing (FDM) of the different element signals may be used to preserve the signal integrity in a satellite to GBBF 101 forward feederlink channel. The forward feederlink FDM channel 104 may introduce random offsets, for example, the parameter cm 108. For a proper formulation of the beam at the GBBF 101, these offsets in the feederlink channel may need to be estimated and compensated for. The GBBF 101 on the forward feederlink FDM channel 104 may transmit a set of channel sounding pilot beacon 106 signals that experience the same complex-valued channel coefficients {cm} from the GBBF 101 to the satellite antenna element array 105. These channel sounding pilot beacons may traverse the forward link path that may include the forward feederlink FDM channel 104, the satellite Hybrid Matrix 501, which may be part of the forward link payload, and the forward downlink from the satellite antenna array 105 to the MNs 201 on the ground. The channel sounding pilot beacons 106 may be received at several geographically distributed MNs 201 on the forward link, where their amplitude and phase offsets may be measured. The MNs 201 may transfer the channel measurements to the GBBF 101 over a Wide Area Network (WAN) fiber connections 502. The channel measurements received over the WAN fiber connections 502 may be used as the input to the estimation algorithm at the GBBF 101.
The approach for estimation of the channel parameters cm 108 may be applicable for both the forward and the return links. Two different instantiations of the estimation algorithm may be used, one for the forward link beamforming parameter estimation, and the second for the return link beamforming parameter estimation. These two instantiations may run in parallel and without any dependence between them. However, the forward link algorithm instantiation may require an extra signal processing function to account for the presence of the Hybrid Matrix 501 at the satellite on the forward link, unlike the return link. Furthermore, the forward link algorithm instantiation, unlike that for the return link, may require the measurement transfer architecture over the Wide Area Network (WAN) fiber connections 502.
The sparse connectivity and the variable strengths of the individual connections may prevent a direct measurement of any arbitrary parameter cm relative to any other parameter cn.
a depicts an exemplary adjacency diagram for connectivity patterns in a beamforming network.
In general, the jth measurement at ith measuring device may be mij. The ideal measurement may be mij=ƒ(ci,kj), for example, the output of a binary function ƒ(. . .), where the admissible functions are the sum, difference, product, ratio, an arbitrary power, and so on. mij=ki2ci−1/3, mij=√{square root over (ki+ci)}, may be two of the admissible functions. The function ƒ(ci, kj) may be defined as the product function, for example, as ci×kj. nij may denote the noise in the actual measurement mij.
As depicted in
Each of the local measurement sets m1, m2, m3, and so on, may contain only partial information of the full parameter set c. This partial information may not be directly merged together to obtain full information about the parameter set c because of the unknown measurement offset ki affecting each measurement set mi.
A reliable estimate of the parameter set c may be arrived at using iterative parameter estimation. For example, the calibration beacons at the several MNs 201, as depicted in
Beacon receiver measurements may be performed by the signal processing 304. Connectivity matrix GL×M may denote a rectangular matrix of the connection strengths between the L MNs 201 and the M parameter nodes 108.
The measurements Rl,m made by the measurement nodes 201 may also form a rectangular matrix RL×M, which may be represented by RL×M=KL×L×GL×M×CM×M+uL×M, where uL×M may be a rectangular matrix of the additive thermal noise and co-channel interference effects. The value placed in lth row and mth column of the matrix RL×M may be the measurement nodes 201 measurement of the lth BT 107 transmission signal as the signal arrives at the mth parameter node 108, and may have the form Rl,m=gl,m×cm×kl+ul,m, where gl,m is either 1 or 0 for a binary connection matrix.
For a graded connection matrix, the normalization of the measurement Rl,m by the nominal value of the connection strength gl,m may be necessary. The scaled measurement
may have errors due to the scaled additive noise and interference, plus errors due to any error in the estimation of the connection strength, which may increase as the connection strength between the BT 107 and the parameter node 108 decreases.
The normalized set of receiver measurements
may form the matrix {tilde over (R)}L×M. {tilde over (R)}{tilde over ( )}L×M=KL×L×1L×M×CM×M+nL×M, where 1 may be a matrix of 1s. The variance σl,m2 of the (l,m)th entry of matrix nL×M may be approximated as σl,m2∝|ĝl,m|−2, and the signal to noise ration (SNR) may be approximated as γl,m∝|ĝl,m|2. Thus, the stronger the connection between the BT 107 and the parameter node 108, the better the reliability of the measurement, which may represented by a small assigned variance. The variance σl,m2 may be set to a high number, and the SNR to a low value, if the measurement {tilde over (R)}l,m is not available, for example, due to lack of connections or due to a failure of the BT 107.
To perform iterative parameter estimation, multiple BTs 107 may be calibrated, for example, by estimating and removing the relative difference between the perturbations kl for different BT 107, using a common parameter node 108. A relative estimation of kl may be obtained from any of the M columns of the matrix {tilde over (R)}L×M, where each column corresponding to a unique parameter node 108. The different elements of a column of {tilde over (R)}L×M may have a common parameter cm, and may only differ due to the terms k1. For example, in a GBBF system with L>4 BTs, BTs 1 through 4 may be calibrated using measurements at the measurement nodes 201.
Once the BTs 107 have been calibrated, multiple parameter nodes 108 may be calibrated using the calibrated BTs 107. For example, the calibrated BTs 1 through 4 may be used to calibrate parameter nodes 1 through 5.
The calibrated parameter nodes 108 may then be used to calibrate different BTs 107 than were originally calibrated. For example, the calibrated parameter nodes 1 through 5 may be used to calibrate BTs 5 through 8. The newly calibrated BTs 107 may then be used to calibrate parameter nodes 108 that were not already calibrated, which may in turn be used to calibrate more BTs 107, and so on until all of the available measurements have been used to optimally estimate the perturbation at the BTs 107 and the value of the parameter nodes 108.
Depending on the parameter node 108 index m, the elements of the estimation noise vector nk
An equivalent formulation may be obtained for an arbitrary row, for example, the lth row, of the normalized matrix {tilde over (R)}L×M of the receiver measurements, {tilde over (c)}l=[{tilde over (R)}(l,1),{tilde over (R)}(l,2), . . . ,{tilde over (R)}(l,M)]T. The vector {tilde over (c)}1 may represent the lth BT 107 measurements of M parameter nodes, and may be {tilde over (c)}l=kl×c+nc
In block 1002, the estimate of the unknown parameter node terms may be improved. The estimate of the unknown parameter terms, for example, the first order estimate in rows of matrix {tilde over (R)}, may be improved using prior estimates of the BT offsets k, for example, the first order estimates in the columns of matrix {tilde over (R)}. The estimate may be improved using Wiener filtering. An estimate {tilde over (k)} of the BT 107 offsets k may be available, as in block 1001. Similarly, an estimate of the variances of the individual terms of the vector of the corresponding estimation noise nk may also be formed, as in block 1001. Using the partial knowledge {tilde over (k)} of the BT offsets k, the estimate of the unknown parameter node terms c may be improved.
The normalized receiver measurement matrix {tilde over (R)}L×M may be transformed, using the estimate vector {tilde over (k)}, to a form that contains only the unknown cm terms, {tilde over (C)}L×M={tilde over (K)}L×L−1×{tilde over (R)}L×M˜1L×M+CM×M. The mth column may have L different estimates of a single unknown variable cm, and may be represented as
These estimates may be combined using a weight vector w whose lth element, wl, may be inversely proportional to the variance of the corresponding noise term nc
The M such estimates {tilde over (c)}m may collected in a single vector {tilde over (c)}. The variances of the estimates {tilde over (c)}m may be updated by taking the harmonic mean of the individual variances.
In block 1003, the estimate of the BT offsets may be improved. The estimate of the BT 107 offsets k may be improved using prior estimates of the parameter node 108 terms c. The estimate may be improved using Wiener filtering. An estimate {tilde over (c)} of the unknown parameters node 108 terms c and the variances of the elements of vector of the corresponding estimation noise nc may be available, for example, as determined in block 1002. Using the partial knowledge {tilde over (c)} of the parameter node 108 terms c, the estimate of the BT 107 unknown offsets k may be improved.
The estimated vector {tilde over (c)} may be converted to a diagonal matrix {tilde over (C)}M×M. The normalized receiver measurement matrix {tilde over (R)}L×M may be transformed to a form that contains only the unknown kl terms, {tilde over (K)}M×L={tilde over (C)}M×M−1×({tilde over (R)}L×M)T˜1M×L+KL×L. These estimates may be combined, for example, as in block 1002. The variances of the estimates {circumflex over (k)}1 may be updated by taking the harmonic mean of the individual variances.
In block 1004, the counter n may be incremented.
In block 1005, if the iterative parameter estimation has reached a desired accuracy in estimation of the perturbation at the BTs 107 and the value of the parameter nodes 108, flow ends. Otherwise, flow proceeds back to block 1002, where the updated estimates in {tilde over (c)} and {tilde over (k)} may be used.
Iterative parameter estimation may have better optimality, including robustness to noise and measurement instrument failures, computational simplicity, ability to resolve the phase ambiguity and ability to handle nonlinear models of the measurements than alternative methods of parameter estimation. For example, iterative parameter estimation may outperform the selective daisy chain method, both in accuracy and in robustness to instrument failures, since iterative parameter estimation may use all the available information in all the measurement sets, and may not throw away the information not belonging to the selected paths.
The computational cost of iterative parameter estimation may be approximately an order of magnitude smaller than the maximal daisy chain when the total number of parameters and measurement sets increases above 100. Iterative parameter estimation may not suffer from the phase ambiguity problem.
As used herein, a “computer” or “computer system” may be, for example and without limitation, either alone or in combination, a personal computer (PC), server-based computer, main frame, server, microcomputer, minicomputer, laptop, personal data assistant (PDA), cellular phone, pager, processor, including wireless and/or wire line varieties thereof, and/or any other computerized device capable of configuration for receiving, storing and/or processing data for standalone application and/or over a networked medium or media. Examples of communication media that can be employed include, without limitation, wireless data networks, wire line networks, and/or a variety of networked media.
Computers and computer systems described herein may include operatively associated computer-readable media such as memory for storing software applications used in obtaining, processing, storing and/or communicating data. It can be appreciated that such memory can be internal, external, remote or local with respect to its operatively associated computer or computer system. Memory may also include any means for storing software or other instructions including, for example and without limitation, a hard disk, an optical disk, floppy disk, DVD, compact disc, memory stick, ROM (read only memory), RAM (random access memory), PROM (programmable ROM), EEPROM (extended erasable PROM), and/or other like computer-readable media.
In general, computer-readable media may include any medium capable of being a carrier for an electronic signal representative of data stored, communicated or processed in accordance with embodiments of the present invention. Where applicable, method steps described herein may be embodied or executed as instructions stored on a computer-readable medium or media.
It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for purposes of clarity, other elements. Those of ordinary skill in the art will recognize, however, that these and other elements may be desirable. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements is not provided herein. It should be appreciated that the figures are presented for illustrative purposes and not as construction drawings. Omitted details and modifications or alternative embodiments are within the purview of persons of ordinary skill in the art.
It can be appreciated that, in certain aspects of the present invention, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to provide an element or structure or to perform a given function or functions. Except where such substitution would not be operative to practice certain embodiments of the present invention, such substitution is considered within the scope of the present invention.
The examples presented herein are intended to illustrate potential and specific implementations of the present invention. It can be appreciated that the examples are intended primarily for purposes of illustration of the invention for those skilled in the art. The diagrams depicted herein are provided by way of example. There may be variations to these diagrams or the operations described herein without departing from the spirit of the invention. For instance, in certain cases, method steps or operations may be performed or executed in differing order, or operations may be added, deleted or modified.
Furthermore, whereas particular embodiments of the invention have been described herein for the purpose of illustrating the invention and not for the purpose of limiting the same, it will be appreciated by those of ordinary skill in the art that numerous variations of the details; materials and arrangement of elements, steps, structures, and/or parts may be made within the principle and scope of the invention without departing from the invention as described in the following claims.
This application claims priority on the basis of U.S. Provisional Patent Application No. 61/447,439, filed on Feb. 28, 2011. The entire disclosure of the provisional patent application is incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
20030050016 | Boros et al. | Mar 2003 | A1 |
20060052062 | Heddergott et al. | Mar 2006 | A1 |
20070004337 | Biswas et al. | Jan 2007 | A1 |
20070287385 | Stephenne | Dec 2007 | A1 |
20100304687 | Azadet et al. | Dec 2010 | A1 |
Entry |
---|
Agee, “The Least-Squares CMA: A New Technique for Rapid Correction of Constant Modulus Signals”, Proc. IEEE ICASSP, 1986, pp. 19.2.1-19.2.4. |
Annamalai et al., “Unified Analysis of Generalized Selection Diversity with Normalized Threshold Test per Branch”, IEEE WCNC Conference, 2003. |
Talwar et al., “Blind Separation of Synchronous Co-Channel Digital Signals Using an Antenna Array. Part I. Algorithms”, IEEE Trans Signal Processing, May 1996, vol. 44, pp. 1184-1197. |
Number | Date | Country | |
---|---|---|---|
20120218141 A1 | Aug 2012 | US | |
20130044024 A2 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
61447439 | Feb 2011 | US |