The invention relates to a method for landing a tethered aircraft. The invention further relates to a launch and land system for a tethered aircraft.
Tethered aircrafts are for instance known from airborne wind energy production. An example for a respective system by the applicant is described in detail in EP 2 631 468 A1.
For efficient and economic operation of such systems, a high degree of automation is desirable, in particular during launching, landing, and ground handling of the aircraft. It is thus an object of the invention to provide for a high degree of automation during launching and/or landing and/or ground handling of a tethered aircraft.
According to the invention, this object is achieved by a method for landing a tethered aircraft, comprising the steps of
It is an aspect of the invention to decelerate the aircraft by use of the tether. This allows the aircraft to be decelerated prior to and after touch down alike or, in other terms, both in flight and when rolling on the ground. The aircraft thus can approach with released constraints on flight path, enabling completely autonomous flight of the aircraft during approach without any need for supervision and/or intervention by a human operator.
In case of deceleration in flight, it might happen that the aircraft gets decelerated below stall speed and thus drops the remaining distance to the runway. Preferably, the aircraft is equipped with a landing gear designed for such load conditions in order to fully explore the benefits provided by the invention.
It is another aspect of the invention that the majority of kinetic energy of the aircraft is dissipated by damping the tightening of a loop formed in the tether, which beneficially can be achieved by use of ground-based equipment. This allows maintenance of such equipment anytime, even when the aircraft is flying. Maintenance of such equipment thus does not compromise availability of the aircraft, for instance for airborne wind energy production.
It is yet another aspect of the invention that the aircraft is decelerated depending on its position. In particular, deceleration starts when the tether with fixed free length is tensioned and the loop in the tether starts to get tightened. Deceleration then continues until the aircraft does not move any further.
Since the length of tether has been fixed to a predetermined value or amount, the aircraft comes to a halt latest when the loop reduced to the minimum size allowed by construction.
When said value for fixed free length of tether is predetermined such that the decelerated aircraft comes to stand within a predetermined target area at said ground site, ground handling of the aircraft may be simplified and further automatized. In particular, automated systems can rely on the fact that the aircraft stands in a predefined target area after landing. Thus, the invention allows for simpler and thus easier-to-automate ground handling of the aircraft.
It is of advantage when the aircraft approaches the ground site against the wind, which is beneficial in terms of stable flight conditions and a lower allowable aircraft velocity upon approach. In general, an approach against the wind can increase the safety margin and thus leads to reduced constraints on the flight path for automated landing procedures.
It is further beneficial when a runway for the aircraft at said ground site is oriented to align with the direction of approach of the aircraft, which avoids the need for complex flight maneuvers. In general, an approach against the wind can increase the safety margin and thus leads to reduced constraints on the flight path for automated landing procedures.
It is most beneficial when the aircraft approaches against the wind, while the runway is aligned with direction of approach.
The object of the invention is also achieved by a launch and land system for a tethered aircraft comprising a runway for the aircraft, a winch for the tether, and a retention system for forming a loop of the tether between the winch and the aircraft approaching the runway, wherein said retention system features a damping device for damping a tightening of said loop caused due to movement of the aircraft upon approach and landing in order to decelerate said aircraft.
The launch and land system according to the invention is in particular designed and constructed to be operated pursuant a method for landing a tethered aircraft according to the invention as described above.
For aligning the runway with the wind and/or with a direction of approach of the aircraft, the runway is for instance rotatable around a vertical axis.
In a preferred embodiment of the invention, the guiding device for the tether is arranged approximately in the middle of the runway and/or close to a rotational axis of the runway. This way, the guiding device can be arranged stationary even when the runway is orientable or rotatable.
It is further preferred that the guiding device is rotatable, preferably co-axially with rotatable runway, in order to enable straight guidance of the tether towards the airborne aircraft without sharp bends of the tether.
In a preferred embodiment of the invention, the retention device comprises a movable slider with a roller, wherein an axis of said roller is aligned essentially horizontal and across a direction of movability of said slider. For instance, said direction of movability of the slider is aligned with the runway. This arrangement provides for most simple and stable construction for forming a loop in the tether.
When said roller has a varying diameter along its axis, with larger diameter towards both ends and smaller diameter in between, the tether running over the roller is guided self-aligning without further lateral guides.
In a preferred embodiment of the invention, said roller comprises two concentric tubes, which are radially linked with each other by at least one flexible element, wherein the roller is supported at the slider via said inner tube and wherein the roller engages with the tether via said outer tube. In this embodiment, the flexible element serves as a cushion for dampening peak forces acting on the system, for instance when the initially slack tether in the loop is tightened and abruptly engages with the roller.
In a particular preferred embodiment of the invention, said damping device comprises a shock absorber, in particular a hydraulic shock absorber, for dissipating the kinetic energy of the aircraft.
It is further preferred when said damping device comprises a pulley assembly for connecting the slider to the shock absorber, wherein the pulley assembly in particular comprises at least one cable and at least one pulley to guide said cable. It is one advantage of this embodiment that a pulley block assembly can provide for a transmission with non-unity ratio between the slider and the shock absorber, allowing for a relatively long distance of slider movement to correspond to a relatively short stroke of the shock absorber. It is another advantage that a pulley block assembly provides for some flexibility, which helps to damped peak forces.
In another preferred embodiment of the invention, the retention device comprises a positioning mechanism for positioning said slider at least in an extended position for maximum retention of the tether and/or in a parking position for no engagement of the roller with the tether.
The invention is described below, without restricting the general intent of the invention, based on exemplary embodiments with reference to the drawings. The drawings show in:
In the drawings, the same or similar types of elements or respectively corresponding parts are provided with the same reference numbers in order to prevent the elements from needing to be reintroduced.
A slider 42 with a roller 46 is movable along rails 44 in order to capture the tether 92 close to the swivel mechanism 60, in order to form a loop of said tether 92. Rails 44 provide for an extended position for slider 42, where slider 42 is positioned at maximum distance from the swivel and thus retention of tether 92 is maximized. Rails 44 preferably also provide for a parking position for slider 42, where the roller 46 is disengagement from the tether 92.
A ramp 48 is provided to shield the slider 42 and the roller 46 from collisions with the landing gear 94 of the approaching aircraft 90.
The direction of approach of the aircraft 90 is indicated by arrow 91.
On the far end of the runway 12, as seen by the approaching aircraft 90, there is provided for a target area 14, where the aircraft 90 will come to a halt after landing and deceleration. The target area 14 is laterally bordered by guide rails 80. Said guide rails 80 restrict the aircraft 90 to remain inside the target area 14 when rolling across the platform 10 during ground handling.
The launch and land system 1 also comprises a catapult with two catapult arms 30 for launching the aircraft 90. For this purpose, each catapult arm 30 has a shuttle 34, respectively, which engage with the aircraft 90, for instance with the landing gear 94 of the aircraft, allowing to accelerate the aircraft 90 along the catapult arms 30.
Underneath the swivel mechanism 60, there is provided for a winch 62 with a winch drive 64 for the tether 92. By guiding the tether 92 along the axis of rotation of the platform 10, it is possible to position the winch 62 and winch drive 64 stationary underneath the platform 10. However, those skilled in the art will appreciate that this is just an example and that the winch 62 and winch drive 64 can also be arranged to move with the rotatable platform 10.
Also shown in
A catapult drive 32 is provided to drive the catapult shuttles 34 along the catapult arms 30, respectively. Those skilled in the art will appreciate that having one catapult drive 32 for two shuttles 34 of two catapult arms 30 is just an exemplary embodiment. In alternative embodiments of the invention, a separate catapult drive 32 can be foreseen for each of the shuttles 34, while other embodiments may have just one catapult arm 30 with one shuttle 34 and one catapult drive 32.
The slider 42 with roller 46 and the damping mechanism 41 are part of a tether retention system, which is shown in detail in
Similarly, the ramp 48 is movable along the slider rails 44 by means of belts driven by respective ramp drives 56. In particular, the slider 42 and the ramp 48 can positioned independently from each other. Those skilled in the art will appreciate that it is also possible within the scope of the invention to couple slider 42 and ramp 48 for simultaneous movement by means of a common drive.
In addition to the mechanism for positioning the slider 42 as just described, the slider 42 is coupled to a shock absorber 50 via a pulley block assembly. For instance, the shock absorber 50 comprises a piston moving in a cylinder.
In the exemplary embodiment shown in
Said transmission provides for non-unity ratio of distance moved by the slider 42 and the stroke of the shock absorber 50, for instance for a ratio of six to one. At the same time, the transmission introduces a certain flexibility between the slider 42 and the shock absorber 50, in order to dampen abrupt forces acting on the slider 42 and/or the roller 46 of the slider 42.
As the slider 42 moves along the slider rails 44, the shock absorber 50 gets compressed. In order to uncompress the shock absorber 50, thereby moving the slider 42 backwards, a pulley block drive 53 acting on the dynamic pulley block 51 is provided.
As a matter of fact, the pulley block drive 53 and the slider drives 55 potentially counteract and block each other. It is therefore beneficial when at least one of said drives 53, 55 can be switched to minimum counter torque and/or can be mechanically disengaged from the slider 42, for instance by means of a clutch and/or a torque limiter.
a-c illustrate the sequence of automated launching according to the invention of a tethered aircraft 90.
Simultaneously, the slider 42 is moved along the slider rails 44, eventually crossing the swivel mechanism 60 in the center of the platform 10, thereby disengaging from the tether 92. This way, the roller 46 of slider 42 does not touch the tether 92 during normal flight operation, which beneficially avoids unnecessary wear on the roller 46 and/or the tether 92, respectively.
Once enough altitude is reached, the aircraft 90 is ready for normal flight operation, for instance for harvesting wind energy for production of electricity. Such operation is for instance described in detail in EP 2 631 468 A1, see in particular
During normal flight operation of the aircraft 10, the platform 10 or the runway 12, respectively, remain preferably aligned with the wind 5. It is further beneficial when the swivel mechanism 60 turns relative to the platform 10 in order to follow the flight pattern of the aircraft 90 to ensure straight guidance of the tether 92 through the platform 10, which minimizes wear on the tether 92.
The sequence of automated landing according to the invention of the tethered aircraft 90 is illustrated by
When the free length of tether 92 reaches a predetermined value, operation of the winch 62 is ceased and the winch 62 is locked in order to keep the free length of tether 92 constant. Alternatively, a break acting on the tether 92, which for instance is located at or close to the swivel mechanism 60, is closed, thereby holding tight on the tether 92. At this point in time, the slider is positioned at the extreme position for maximum retention of the tether 92, with the tether 92 running below the roller 46 of the slider 42. With the free length of tether 92 fixed and the aircraft 90 still moving, the tether 92 falls slack as the aircraft 90 moves over the slider 42. This phase of landing is depicted in
When the aircraft 90 crosses the slider 42, either in flight or rolling on the runway 12, a loop is formed in the tether 92 extending from the swivel mechanism 60 over the roller 46 to the aircraft 90. The tether 92 in this loop is initially slack (cf.
As the tether 92 in the loop is straightened out, the moving aircraft 90 is exerting a pull on the slider 42 via the roller 46, which is also acting on the shock absorber 50. Thus, the kinetic energy of the aircraft 90 is dissipated by the shock absorber 50. Regardless whether the aircraft 90 is still flying or already has touched ground and is rolling on the runway 12, the aircraft 90 is thereby decelerated until coming to a complete halt within the target 14 before the end of the runway 12 on the platform 10 (cf.
After the aircraft 90 has been landed and decelerated to a stop within the target area 14, the invention also provides for automated ground handling of the aircraft 90, in particular for aligning and securing the aircraft 90 on top of the platform 10.
For this purpose, the platform 10 comprises guide rails 80 on either side of the target area 14. These guide rails 80 are arranged in a funnel-shaped way with the wider side of the funnel being oriented towards an edge of the platform 10 and the narrower side of the funnel being oriented towards the swivel mechanism 60.
By using the winch 62 and winch drive 64 together with the tether 92, the aircraft 90 standing in the target area 14 is pulled backwards to the narrow side of the funnel, as illustrated by
For instance, as shown in
Due to the funnel shaped arrangement of the guide rails 80, the aircraft 90 is guided towards a defined position within the narrow side of the funnel shape of the target area 14 when pulled backwards by means of the tether 92. This way, the aircraft 90 is for instance brought to a target position with defined orientation directly above the swivel mechanism 60, where the aircraft 90 can either be secured for parking or can be loaded onto the catapult system for re-launch.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 003 499.0 | Apr 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/059308 | 4/11/2018 | WO | 00 |