Embodiments of the present invention relate to a method for laser welding two workpieces along a weld seam.
Laser welding (also called laser beam welding) is used to permanently connect meltable, usually metallic workpieces to one another. In this case, the laser welding can be effected with relatively high speed, high precision (in particular with a narrow weld seam) and low thermal distortion of the workpieces.
Depending on the beam intensity of the laser beam used, the laser welding may be effected as heat conduction welding or as deep penetration welding.
In deep penetration welding, the laser beam generates a pronounced vapor capillary (keyhole) in the workpiece material, said vapor capillary extending along the beam direction into the workpiece material. As a result of multiple reflections of the laser beam at the walls of the vapor capillary, the absorption in the workpiece material is increased. The material can also be melted in the depth and in a large volume. The deep penetration welding can be effected with a relatively high feed rate (welding speed). However, spatter and the formation of pores often occurs during deep penetration welding, and an irregular weld depth along the weld seam is frequently also observed (spiking). When welding thin workpieces, local connection problems may then occur; the weld seam may be mechanically unstable, or a desired gas-tightness or a desired quality of an electrical contact-connection is not achieved.
In heat conduction welding, the workpiece material is melted by the laser beam close to the surface, without producing a noticeable vapor capillary. The weld depth is essentially determined by the heat conduction of the workpiece material. Irregularities such as spatter or pores rarely occur, and the weld seam is relatively smooth. However, a disadvantage is a relatively low feed rate and weld depth; increased thermal distortion may also occur.
A method for laser welding two workpieces along a weld seam includes arranging a first workpiece and a second workpiece on top of one another so that the first workpiece and the second workpiece overlap at least in a region of overlap. The first workpiece has a thickness D1, and the second workpiece has a thickness D2. Each of D1 and D2 is 400 μm or less. The method further includes melting, using a laser beam guided along the weld seam, a material of the first workpiece over an entirety of the thickness D1 and a material of the second workpiece over only a partial thickness TD of the thickness D2 in the region of overlap, from a side of the first workpiece. The laser beam generates a vapor capillary that extends to a capillary depth KT into the first workpiece or into the first workpiece and the second workpiece, where 0.33*EST≤KT≤0.67*EST, with EST being a weld depth EST=D1+TD.
Subject matter of the present disclosure will be described in even greater detail below based on the exemplary figures. All features described and/or illustrated herein can be used alone or combined in different combinations. The features and advantages of various embodiments will become apparent by reading the following detailed description with reference to the attached drawings, which illustrate the following:
Embodiments of the invention can achieve a high seam quality with a high feed rate during the welding of thin workpieces.
Embodiments of the invention provide a method for laser welding two workpieces along a weld seam,
Embodiments of the present invention conduct the laser welding of two thin workpieces in the lap joint in a transition mode between heat conduction welding and deep penetration welding (“transition mode welding”). This makes it possible to largely utilize the advantages of both processes and to largely avoid the disadvantages of both processes. In particular, a sufficient weld depth can be observed with a high degree of accuracy, such that in particular also gastight connections exhibiting good electrical conductivity can be established in a reliable manner. At the same time, manufacturing can be performed with a relatively high feed rate.
Under the conditions according to embodiments of the invention for the capillary depth KT (extent of the vapor capillary into the workpiece material) in relation to the weld depth EST (extent of the melt bath into the workpiece material), the welding is effected in the desired transition range between heat conduction welding and deep penetration welding, and a high weld seam quality can be achieved with a relatively high feed rate.
In the context of the method according to embodiments of the invention, a vapor capillary is produced, however the latter is relatively short (in the direction into the workpiece material or in the laser beam direction) compared with conventional deep penetration welding. The weld depth is essentially determined both by heat conduction and by the depth of the vapor capillary, the two proportions being of approximately equal size. This makes it possible to achieve a greater weld depth than in the case of heat conduction welding, which is in particular well suited for the welding of thin workpieces such as metal sheets. At the same time, however, the melt bath dynamics remain low, in particular because the total quantity of the melted material also remains relatively low. The energy absorption from the laser beam into the workpiece material is less pronounced than in the case of deep penetration welding, because the low capillary depth permits only a few reflections of the laser beam within the vapor capillary. In addition, the melting of the workpiece material by heat conduction, which is substantially synchronous with the feed rate, by contrast largely compensates for more rapid dynamic movements in the melt bath.
The weld depth EST can be measured during the welding process for example by means of ultrasonic waves, which are reflected at the interface of liquid workpiece material and solid workpiece material. The capillary depth KT of the vapor capillary can be measured during the welding process for example by means of the reflection of a measurement laser beam at the capillary bottom. Other parameters are usually already known (for instance focus diameter of the laser beam) or are easily ascertained by means of other sensors during the welding process. By way of example, some parameters may be measured optically by means of a camera during the welding process, in particular the width B of the weld seam/of the melted region or the capillary width KB at the workpiece surface transversely with respect to the feed direction, which corresponds approximately to the focus diameter FDQ transversely with respect to the feed direction. Accordingly, the observance of the conditions according to embodiments of the invention can, if desired, be checked and, where appropriate, readjusted during the welding process.
A melted region of a melt width SB is produced around the vapor capillary approximately uniformly in all directions (in the plane transverse to the feed direction). If the focus diameter FDQ of the laser beam at the (front) surface of the first workpiece W1, said surface facing the laser beam, transversely with respect to the welding direction is known, said focus diameter corresponding approximately to the local width of the vapor capillary KB, the width B of the weld seam at the front workpiece surface can be used to readily determine the melt width SB to give SB=(B−FDQ)/2. On the basis of the difference between the weld depth EST, which can be readily seen in section (transverse section), and the thus determined melt width SB, it is then also possible to approximately determine the capillary depth KT in section to give KT=EST−SB. Accordingly, the observance of the conditions according to embodiments of the invention can also easily be checked subsequently on the welded workpiece, and where appropriate process parameters can then be iterated in order to observe the conditions according to embodiments of the invention in the case of future workpieces.
It should be noted that the melt width SB in the context of embodiments of the invention usually corresponds approximately to the capillary depth KT, preferably with 0.67*SB≤KT≤1.33*SB, particularly preferably 0.80*SB≤KT≤1.20*SB.
The thicknesses and depths are determined in each case perpendicularly with respect to that surface of the first workpiece which faces the laser beam (in particular KT, EST, D1, D2). Preferably, in the context of embodiments of the invention, an unstretched laser beam (with an aspect ratio FDQ/FDL of around 1, usually with 0.8≤FDQ/FDL≤1.2, preferably 0.9≤FDQ/FDL≤1.1) is used for the laser welding. The focus of the laser beam on the workpiece surface is typically round (isotropic laser beam).
In a preferred variant of the method according to embodiments of the invention,
Preference is also given to a variant in which
Particular preference is given to a variant in which the laser welding is conducted in such a way that for a width KB of the vapor capillary on a surface of the first workpiece, said surface facing the laser beam, measured transversely with respect to a running direction of the weld seam, the following applies:
Furthermore, preference is given to a variant in which the laser beam has a mean wavelength λ,
Furthermore, a variant in which the laser beam has a mean laser power P, with
Furthermore, preference is given to a variant in which the laser beam has, in the plane of that surface of the first workpiece which faces the laser beam, a focus diameter FD, with
Furthermore, preference is given to a variant in which for a width B of the melted material of the first workpiece on the surface thereof facing the laser beam, measured transversely with respect to a running direction of the weld seam, the following applies:
Particular preference is given to a variant in which:
Preference is also given to a variant in which:
A variant in which the laser beam is moved at a feed rate v relative to the workpieces, with
Preference is also given to a variant in which the two workpieces are in the form of curved metal sheets which are pressed against one another by way of convexly curved outer sides during the laser welding, such that the metal sheets are oriented in an approximately plane-parallel manner and bear against one another in a contact zone by elastic deformation, the laser beam welding the two metal sheets along the weld seam in the region of this contact zone,
A variant in which the two workpieces are in the form of flexible metal foils is also advantageous. When welding the flexible metal foils, embodiments of the invention make it possible to generate a very reliable, robust mechanical connection. Typically, the foils are pressed against one another during the welding by means of a ram.
Embodiments of the present invention also include the use of a method as claimed in one of the preceding claims for welding electrical conductors and/or gas seals formed by the two workpieces. Embodiments of the invention can enable a very reliable welded connection of the two workpieces, which satisfies high requirements in terms of gas-tightness (or liquid-tightness), and can ensure low electrical (or thermal) contact resistances between the workpieces. Therefore, the use in electrical conductors and gas seals is particularly advantageous.
In a preferred variant of the use according to embodiments of the invention, the two workpieces are bipolar plates of a fuel cell. The bipolar plates of a fuel cell generally have to both be connected in a gas-tight manner (usually for oxygen) and have a good electrical connection, in order to be able to transport current generated by the fuel cell with little loss. In addition, bipolar plates have thicknesses which can be readily connected by the method according to embodiments of the invention.
Further advantages of the embodiments of the invention are evident from the description and the drawing. Similarly, according to embodiments of the invention, the features mentioned above and those yet to be explained further can be used in each case individually or together in any desired combinations. The embodiments shown and described should not be understood as an exhaustive list, but rather are of an exemplary character for outlining embodiments of the invention.
The first workpiece W1 and the second workpiece W2 are arranged lying one on top of the other so as to overlap in a region of overlap UB; for this purpose, suitable holding tools may be used (for example robot arms or rams, not illustrated in any more detail). The workpieces W1, W2 have, in the region of overlap UB, the thicknesses D1 and D2, the thicknesses being selected here such that D1=D2=100 μm. The workpieces W1, W2 are usually manufactured from metallic material. The thicknesses D1, D2 are measured perpendicularly with respect to a surface 3 of the first workpiece W1.
A laser beam 2 is directed onto the surface 3 of the first workpiece W1 in order to weld the workpieces W1, W2 to one another in the lap joint. In this case, the laser beam 2 is moved relative to the workpieces W1, W2 along the feed direction VR, typically by means of a laser scanner (not illustrated) which is configured, for example, with a mirror that is movable by means of a piezo drive. The laser beam 2 is generated, for example, by an IR laser with a wavelength of 1030 nm. As a result, the laser beam 2 generates a weld seam 4 with a running direction VLR which corresponds to the feed direction VR.
Here, the laser beam 2 generates the vapor capillary 1 in the material of the first workpiece W1 (it should be noted that the vapor capillary may also reach into the second workpiece in other variants when the second workpiece is considerably thicker than the first workpiece, not illustrated). The vapor capillary 1 has, at the surface 3 of the first workpiece W1, a (maximum) capillary width KB which corresponds very accurately to the (maximum) focus diameter FDQ of the laser beam 2, said focus diameter being measured in a transverse direction QR. The transverse direction QR runs perpendicular to the feed direction VR and in the plane of that surface 3 of the first workpiece W1 which faces the laser beam 2.
Here, the laser beam 2 is in the form of a circular point focus, such that a (maximum) focus diameter FDL (also called focus longitudinal diameter) along the feed direction VR is equal to the focus diameter FDQ (also called focus transverse diameter) in the transverse direction QR. Here, the laser beam 2 has a direction-independent, homogeneous focus diameter FD, which represents a preferred variant.
The vapor capillary 1 in this case reaches to a capillary depth KT into the material of the first workpiece W1. In the variant shown, KT is approximately ¾ of the thickness D1, that is to say about 75 μm.
The material of the workpieces W1, W2 is melted around the vapor capillary 1; a melt bath 5 is thus formed. Proceeding from the vapor capillary 1, the material (in the cross-sectional plane shown in
In the variant shown, the vapor capillary 1 also has a capillary width KB of approximately 50 μm, which is measured in the transverse direction QR in the plane of the workpiece surface 3. It should be noted that the capillary width KB corresponds very accurately to the focus diameter FDQ in the transverse direction QR. Accordingly, the capillary depth KT is approximately 1.5 times as great as the capillary width KB, that is to say about KB/KT=1.50. The weld seam 4 has a width B (measured in the transverse direction QR) of about 180 μm in this case, corresponding to the sum KB+2*SB. The partial thickness TD over which welding is performed into the second workpiece W2 is in this case approximately 40% of the total thickness D2, that is to say TD=0.40*D2.
In particular, the laser power of the laser beam 2, the focus diameter FD of the laser beam 2 at the workpiece surface 3 and a feed rate (welding speed) of the laser welding have been selected such that the ratios of vapor capillary 1, melt bath 5 and workpiece geometry shown here are set for carrying out the laser welding in the transition mode between heat conduction welding and deep penetration welding.
In the heat conduction welding operation, as illustrated in
In addition, in the heat conduction mode (with the isotropic laser beam 2 used), the capillary depth KT is additionally also considerably smaller than the capillary width KB. In
In the transition mode, the capillary depth KT is additionally also of similar size or only slightly greater than the capillary width KB. In
In the deep penetration welding mode (with the isotropic laser beam 2 used), the capillary depth KT is additionally also considerably greater than the capillary width KB. In
With a known focus diameter FDQ in the transverse direction QR (or a known capillary width KB), the capillary depth KT can be easily ascertained from the width B of the weld seam and the weld depth EST. B and EST can be easily seen in section (transverse section as in
In the example of
The two workpieces W1, W2 have mutually facing, convexly curved outer sides 31, 32. If the two workpieces (metal sheets) W1, W2 are placed against one another by way of these curved outer sides, contact occurs only along a narrow contact line 30; in the cross section shown in
A weld of the workpieces W1, W2 along this contact line 30 would be very difficult, since the region which would normally be melted in the case of plane-parallel abutment would lie partially in a or a plurality of V-shaped empty spaces 33 between the workpiece outer sides 31, 32; as a result, gaps or at least weak regions could easily be produced in the weld seam.
According to embodiments of the invention, for the welding, the workpieces W1, W2 are pressed toward one another by way of their convex outer sides 31, 32 (cf. pressing direction 34), as a result of which elastic deformation of the outer sides 31, 32 occurs (cf.
In this elastically deformed state of the workpieces W1, W2, the laser welding according to embodiments of the invention is effected by means of a laser beam 2 which is directed onto the workpiece surface 3 of the first workpiece W1. In this case, the feed direction of the laser beam 2 lies perpendicular to the plane of the drawing of
It should be noted that the elastic deformation of the workpieces W1, W2 or the force of the pressing is selected to be of such a pronounced extent that a contact width KOB of the contact zone 35 is greater than the width B of the weld seam 4. This makes it possible to obtain a particularly high-quality weld seam 4, comparable to the quality of a weld of two planar workpieces lying against one another (as shown in
After the laser welding and sufficient cooling of the workpieces W1, W2, the pressing force is released again, and the workpieces W1, W2 spring back approximately into the elastically relaxed state shown in
In a preferred variant of the method according to embodiments of the invention, a weld may be effected in particular with the following parameters:
In this case, KT/KB=1.5 and KT=0.42*EST and TD=0.5*D2 therefore applies.
In another preferred variant of the method according to embodiments of the invention, a weld may be effected in particular with the following parameters:
In this case, KT/KB=2.0 and KT=0.56*EST and TD=0.5*D2 therefore applies.
While subject matter of the present disclosure has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive. Any statement made herein characterizing the invention is also to be considered illustrative or exemplary and not restrictive as the invention is defined by the claims. It will be understood that changes and modifications may be made, by those of ordinary skill in the art, within the scope of the following claims, which may include any combination of features from different embodiments described above.
The terms used in the claims should be construed to have the broadest reasonable interpretation consistent with the foregoing description. For example, the use of the article “a” or “the” in introducing an element should not be interpreted as being exclusive of a plurality of elements. Likewise, the recitation of “or” should be interpreted as being inclusive, such that the recitation of “A or B” is not exclusive of “A and B,” unless it is clear from the context or the foregoing description that only one of A and B is intended. Further, the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise. Moreover, the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.
Number | Date | Country | Kind |
---|---|---|---|
10 2020 128 464.0 | Oct 2020 | DE | national |
This application is a continuation of International Application No. PCT/EP2021/077776 (WO 2022/089912 A1), filed on Oct. 7, 2021, and claims benefit to German Patent Application No. DE 10 2020 128 464.0, filed on Oct. 29, 2020. The aforementioned applications are hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2021/077776 | Oct 2021 | US |
Child | 18302008 | US |