The present disclosure is generally directed to micro-reactors and, more specifically, to methods of fabricating micro-reactors.
In the chemical and pharmaceutical industries, the need for the processing of small quantities of high value materials is continually increasing. Conventional large processing facilities do not lend themselves well for the manufacture of specialized high value small volume products requiring a higher degree of process control (temperature, pressure, flow rates, mixing, etc.). Hence, the present inventors have recognized a need for micro-reactors capable of processing small batches of materials in a more continuous and controlled fashion.
Micro-reactors are commonly referred to as microstructured reactors, microchannel reactors, or microfluidic devices. Regardless of the particular nomenclature utilized, the micro-reactor is a device in which a sample can be confined and subject to processing. The sample can be moving or static, although it is typically a moving sample. In some cases, the processing involves the analysis of chemical reactions. In others, the processing is executed as part of a manufacturing process utilizing two distinct reactants. In still others, a moving or static target sample is confined in a micro-reactor as heat is exchanged between the sample and an associated heat exchange fluid. In any case, the dimensions of the confined spaces may be on the order of about 1 mm. Microchannels are the most typical form of such confinement and the micro-reactor is usually a continuous flow reactor, as opposed to a batch reactor. The internal dimensions of the microchannels provide considerable improvement in mass and heat transfer rates. Micro-reactors that employ microchannels offer many advantages over conventional scale reactors, including vast improvements in energy efficiency, reaction speed, reaction yield, safety, reliability, scalability, etc.
Many materials have been examined for use in a micro-reactor. The material properties of interest include: high corrosion resistance (chemical durability), flexibility to operate at high and low temperatures, high pressure operation, etc. Glass offers many advantages over metals, ceramics and non-metals, but may be more difficult to shape and create 3D structures of interest. Also, some glass materials may suffer shortcomings. For example, some glass materials may be limited to temperatures of approximately 450° C. Also, some glasses are prone to devitrification
As a result, the present inventors have recognized a continuing need for improved systems and methods for manufacturing micro-reactors, especially complex 3D micro-reactor structures having a functional micro-reactor geometry suitable for the pharmaceutical and chemical industries.
According to one embodiment of the present disclosure, a method of forming a micro-reactor is provided. The method comprises providing a base layer comprising glass or glass ceramic material, providing a plurality of layers comprising glass or glass ceramic material, adhering the plurality of layers together to form a multilayer substrate, cutting a serpentine pattern of channels into the multilayer substrate, forming a plurality of serpentine layers by separating the serpentine patterned multilayer substrate, and forming a micro-reactor by bonding together the base layer, at least one serpentine layer, and one or more additional layers.
According to yet another embodiment of the present disclosure, a method of forming a micro-reactor is provided. The method comprises the steps of providing a base layer comprising glass or glass ceramic material, and at least one substrate layer comprising glass or glass ceramic material, forming a serpentine layer by cutting a serpentine pattern of channels and a mixing region pattern in the at least one substrate layer by waterjet cutting, laser cutting or combinations thereof, depositing a plurality of extensions onto a top surface of the at least one base layer via laser induced deposition, aligning the serpentine layer between the base layer and one or more additional layers by inserting the plurality of extensions at least partially into the mixing region pattern of the serpentine layer and a mixing region pattern of the one or more additional layers, and forming a micro-reactor by bonding the at least one bottom layer, the at least one serpentine layer, and the one or more additional layers.
These and additional features provided by the embodiments of the present disclosure will be more fully understood in view of the following detailed description, in conjunction with the drawings.
The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
The embodiments set forth in the drawings are illustrative in nature and not intended to be limiting of the invention defined by the claims. Moreover, individual features of the drawings and invention will be more fully apparent and understood in view of the detailed description.
Referring to the embodiment of
Referring to
Referring to
Before each of the layers 20, 40, 60, and 80 are aligned as shown in
Referring again to
As shown in
To produce the serpentine layer 40 according to the embodiment of
Referring again to
Referring to
For the purposes of describing and defining the present invention it is noted that the term “approximately” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “approximately” is also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
The methods devices disclosed herein or the devices made by the methods disclosed herein may generally be useful in performing any process that involves mixing, separation, extraction, crystallization, precipitation, or otherwise processing fluids or mixtures of fluids, including multiphase mixtures of fluids—and including fluids or mixtures of fluids including multiphase mixtures of fluids that also contain solids—within a microstructure. The processing may include a physical process, a chemical reaction defined as a process that results in the interconversion of organic, inorganic, or both organic and inorganic species, a biochemical process, or any other form of processing. The following non-limiting list of reactions may be performed with the disclosed methods and/or devices: oxidation; reduction; substitution; elimination; addition; ligand exchange; metal exchange; and ion exchange. More specifically, reactions of any of the following non-limiting list may be performed with the disclosed methods and/or devices: polymerisation; alkylation; dealkylation; nitration; peroxidation; sulfoxidation; epoxidation; ammoxidation; hydrogenation; dehydrogenation; organometallic reactions; precious metal chemistry/homogeneous catalyst reactions; carbonylation; thiocarbonylation; alkoxylation; halogenation; dehydrohalogenation; dehalogenation; hydroformylation; carboxylation; decarboxylation; amination; arylation; peptide coupling; aldol condensation; cyclocondensation; dehydrocyclization; esterification; amidation; heterocyclic synthesis; dehydration; alcoholysis; hydrolysis; ammonolysis; etherification; enzymatic synthesis; ketalization; saponification; isomerisation; quaternization; formulation; phase transfer reactions; silylations; nitrile synthesis; phosphorylation; ozonolysis; azide chemistry; metathesis; hydrosilylation; coupling reactions; and enzymatic reactions.
Having described the invention in detail and by reference to specific embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims. More specifically, although some aspects of the present invention are identified herein as preferred or particularly advantageous, it is contemplated that the present invention is not necessarily limited to these preferred aspects of the invention.