The invention resides in a method for limiting the power output of an internal combustion engine wherein an air mass flow deviation of an actual air mass flow from a reference air mass flow is determined and, dependent thereon, a power output reduction is determined by which the maximum power output limit of the internal combustion engine is lowered.
In systems such as they are known, for example, from DE 43 25 307 A1 for a protection from excessively high exhaust gas temperatures, the momentary temperature of the exhaust gas is calculated from other values and is compared with a limit value. If the momentary temperature is above a certain limit value, the fuel injection into certain cylinders is cut. This however results in a non-uniform power output of the internal combustion engine.
It is the object of the present invention to provide a method by which the engine is protected from excessive exhaust gas temperatures without negative secondary effects.
In a method for limiting the power output of an internal combustion engine, an air mass flow deviation of an actual air mass flow (mL(IST)) from a reference air mass flow (ML(REF)) is determined and, depending on the air mass flow deviation, a power output reduction is determined by which the maximum power output limit of the internal combustion engine is to be reduced in order to prevent overheating of the internal combustion engine.
The reference air mass flow is calculated by the engine manufacturer from the engine operating state. The engine operating state is determined on the basis of the engine speed and the power output. For example, for a measured drive torque the engine power output is calculated from which then, via a performance graph, the reference air mass flow is calculated depending on the engine speed. Depending on the air mass flow deviation, then a power output reduction is determined for limiting the power output of the internal combustion engine.
With the method according to the invention, the internal combustion engine is effectively protected from thermal overload when the ambient conditions are changed, for example, when the geodetic height is changed or an air filter is clogged. It is known, that, under such extreme ambient condition, the air mass flow to the engine drops. A reduced air mass flow however results in a reduced heat capacity of the charge air mass flow which results in an increase of the exhaust gas temperature, which again may thermally overload the internal combustion engine.
With the method according to the present invention, the maximum admissible exhaust gas temperature is not exceeded by providing a motor-specific power output reduction when necessary. As a control value for the power output reduction, the air mass flow deviation is particularly suitable since the exhaust gas temperature is directly dependent thereon. The power output reduction is established by a uniform reduction of the fuel injection amount for all the cylinders or by an engine output torque-based engine control wherein the torque contribution of all the cylinders is reduced at the same rate. In any case, a smooth running of the engine is maintained.
In a particular embodiment of the invention, the power output reduction of the engine is determined via a characteristic line or a performance graph, wherein as input values for the performance graph the air mass flow deviation and the engine speed are used. Instationary conditions such as acceleration procedures or load additions in electric generators for example are eliminated by passing the air mass flow deviation signal through a filter with a variable edge frequency. Typically, a filter with a PTI behavior is used for that purpose.
The method according to the invention can be easily integrated into already existing programs of electronic engine control systems so that the expenses are relatively low.
Below, a preferred embodiment of the invention will be described on the basis of the accompanying drawings.
As output values of the electronic control unit 9,
In the first case, that is, without power output limitation (dashed line), the arrangement has the following functionality: In point B of
Also in point C, the internal combustion engine is operated under 100% power output. A reduction in the air mass flow deviation results in a lower heat capacity of the air charge which, again, results in an increase of the exhaust gas temperature. In
In the second case, that is with power output limitation (solid line), the arrangement has the following functionality.
To an air mass flow deviation of 84% a power output value of 95% is assigned via the characteristic line KL, point A.
The maximally possible power output PMMAX is consequently reduced by a power output reduction value dP of 5%. The power output of the internal combustion engine is depicted by way of the power output determining signal ve representing a fuel injection amount or, with a torque-based architecture, as a torque.
Air mass flow deviations occur with changing operating conditions, for example, large geodetic height or changing characteristic engine values, for example, a clogging air filter. As a result of the power output reduction, the exhaust gas temperature remains at the constant value TMAX, see
The method for limiting the power output of an internal combustion engine in accordance with the invention provides for the following advantages:
improved overload protection with changing ambient conditions for example changing geodetic height, clogging air filter,
by filtering the air flow mass deviation signal, instationary conditions such as acceleration or load addition in electric generators are omitted,
the fuel injection amount into, and the torque output of all cylinders are reduced uniformly by the same amount so the smooth engine operation is maintained
the function can be applied as a supplement to existing engine control systems since no hardware changes are needed for the electronic control unit
the additional expenses for the protection of the internal combustion engine are quite moderate.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 008 356.3 | Feb 2006 | DE | national |