The present invention relates to a method for load balancing of multiple charging stations for mobile loads, particularly for Electric Vehicles, EVs, within a charging stations network, wherein on the basis of a prediction of a charging demand of the mobile loads a distribution of an energy-power-range limitation (ΔE, ΔP)p, lim for each charging station p is performed under consideration of a definable optimization parameter, wherein p=1, . . . , n and wherein n and pare integers, and wherein under consideration of said distribution an adaptation and/or selection of at least one transportation parameter of at least one mobile load is performed in order to at least partially fulfill the energy-power-range limitation (ΔE, ΔP)p, lim for each charging station p or for a definable number of charging stations p.
Further, the present invention relates to a charging stations network, comprising: means for load balancing of multiple charging stations for mobile loads, particularly for Electric Vehicles, EVs, means for distributing an energy-power-range limitation (ΔE, ΔP)p, lim for each charging station p on the basis of a prediction of a charging demand of the mobile loads and under consideration of a definable optimization parameter, wherein p=1, . . . , n and wherein n and p are integers, and means for adapting and/or selecting of at least one transportation parameter of at least one mobile load under consideration of said distribution and in order to at least partially fulfill the energy-power-range limitation (ΔE, ΔP)p, lim for each charging station p or for a definable number of charging stations p.
Integration of electric vehicles into transportation or power industry domain has been investigated in research and trials around the world. One of the major challenges is still hold on the sustainable charging of the vehicles as well as the energy delivery for the EV charging needs within cities and large-area transportation—street—networks. As of today, the major focus is given to the process of EV charging, physical connectivity aspects, as well as it's linking to the power grid with regard to charging scheme—connectivity, power.
According to prior art the grid stability management follows either of these 2 schemes:
To realize those, interactions between supply and consumers are in use with various extent. Concepts applied in the industry are demand-response/demand-side-management—ranging from controllable household appliances to industrial scale—for load management, combination of bulk generation and secondary energy resources, and various energy storage schemes.
Primarily, there are two basic concepts to be applied to a device/unit: (i) usage of time-tolerance, and (ii) capacity-tolerance. In general, devices have either one of the capability. Time-tolerance is used for all types of devices or processes which can accept a delay or advance in energy usage, e.g. electrical appliances, cooling houses. They have normally fixed power rates to work, so that time-tolerance comes either by comfort/preference shifting to run the device, or by using intrinsic storage functions like thermal storage for cooling/heating. Capacity-tolerance is possible for devices which can reduce their power/energy usage either by different operational modes, or by flexibility of power adaption, like electrical battery storages.
Looking on EVs, the battery charging process can be influenced by the chosen power level for charging. This, however, has a strong influence on the charging time of an individual EV, and on the charging throughput time when considering an EV fleet with a given limited set of charging stations, EVCS.
From the viewpoint of integration in travel intelligence, currently the following approaches have been considered in different variations:
The link to the power grid is today limited by the information about the power characteristics of the station. Challenges of integrating into power grid management schemes are mainly approached by:
Within this document the following glossary is relevant:
In an embodiment, the present invention provides a method for load balancing of charging stations for mobile loads within a charging stations network. Based on a prediction of a charging demand of the mobile loads, a distribution of an energy-power-range limitation (ΔE, ΔP)p, lim is performed for each of the charging stations p under consideration of a definable optimization parameter, wherein p=1, . . . , n and wherein n and p are integers. Under consideration of the distribution, at least one of an adaptation or selection of at least one transportation parameter of at least one of the mobile loads is performed so as to at least partially fulfill the energy-power-range limitation (ΔE, ΔP)p, lim for each of the charging stations p or for a definable number of the charging stations p.
The present invention will be described in even greater detail below based on the exemplary figures. The invention is not limited to the exemplary embodiments. All features described and/or illustrated herein can be used alone or combined in different combinations in embodiments of the invention. The features and advantages of various embodiments of the present invention will become apparent by reading the following detailed description with reference to the attached drawings which illustrate the following:
In an embodiment, the present invention improves and further develops a method for load balancing of multiple charging stations for mobile loads within a charging stations network and an according charging stations network for allowing a very efficient use of charging stations within a charging stations network.
According to an embodiment of the invention it has been recognized that a load balancing of multiple charging stations for mobile loads within a charging stations network can be particularly efficient by a consideration of at least one transportation parameter of at least one mobile load. In a first step a distribution of an energy-power-range limitation for each charging station is performed under consideration of a definable optimization parameter, wherein such a distribution is based on a prediction of a charging demand of the mobile loads. The energy-power-range limitation defines a limitation regarding energy and power to be provided by the charging station to a mobile load. In a second step, in order to at least partially fulfill the energy-power-range limitation for each charging station or for a definable number of charging stations an adaptation and/or selection of at least one transportation parameter of at least one mobile load is performed under consideration of said distribution. Within the first step the definable optimization parameter impacts the distribution of the energy-power-range limitation which shall be provided for fulfilling of a predicted charging demand of the mobile loads. In the second step at least one transportation parameter of at least one mobile load is adapted and/or selected under consideration of said distribution and in order to at least partially fulfill the energy-power-range limitation. By a suitable adaptation and/or selection of at least one transportation parameter of at least one mobile load an energy-power-range limitation of a charging station can be fulfilled easily. This results in maintaining the distribution of energy-power-range limitations according to the definable optimization parameter. Thus, an optimization process can be reached by the adaptation and/or selection step of said at least one transportation parameter.
As a result, a very efficient use of charging stations within a charging stations network is possible.
Within a preferred embodiment the adaptation and/or selection of at least one transportation parameter can result in a modification of the charging demand or of the prediction of a charging demand of at least one mobile load. Such a modification of the charging demand or of the prediction of a charging demand can provide an adapted basis for the distribution process within the first step of the method.
For providing a very economic method the optimization parameter can be defined for finding a low cost distribution or the lowest cost distribution. The efficiency of the use of the charging stations can be provided by cost saving.
Within a further preferred embodiment the mobile load or the mobile loads can be transformed into time tolerant and capacity tolerant mobile loads. By suitable adaptation and/or selection of at least one transportation parameter of at least one mobile load this time and capacity tolerance can be realized in a very easy way.
Regarding a very simple distribution the energy-power-range limitation (ΔE, ΔP)p, lim can be equally distributed for each charging station p. In other words, each charging station p has the same energy-power-range limitation (ΔE, ΔP)p, lim. However, depending on the individual situation the energy-power-range limitation (ΔE, ΔP)p, lim can be distributed for each charging station p under consideration of a factor in the form of a past balancing potential, economical strength within a network grid and/or strategic location. Thus, by selectively distributing the energy-power-range limitations between the charging stations a very efficient use of the charging stations within the charging stations network can be realized.
The prediction of a charging demand for the first step of the inventive method can depend on various parameters. Preferably, the prediction of a charging demand can depend on at least one transportation parameter. Such a transportation parameter influences the individual charging demand of the mobile load. For example, a longer route results in a higher charging demand than a shorter route.
Generally, a charging demand regarding energy and power to be provided to a mobile load can be a function of time and location.
For taking account of individual situations and circumstances a charging demand can consider a route requirement, route requirements of different routes, a location, a direction, a time condition, a travel time, an estimated arrival time, ETA, a speed, a driving pattern, a current charging need, a predicted charging need, a charging time, a charging mode, a charging level and/or a battery level. It is also possible that a charging demand considers more than one of said different parameters.
The at least one transportation parameter can depend on individual situations. Within a preferred embodiment the at least one transportation parameter can be one or more of a user preference, a route, a route guidance, a routing information, a distance, a direction, a charging time, a travel time, a speed, a waiting time and a break.
With regard to a simple access to a transportation parameter the at least one transportation parameter can be provided by an intelligent transport system or service, ITS. Thus, modern and comfortable transport systems or services can be integrated within the inventive method and charging stations network.
For providing a very efficient method, the method can be performed in a reactive manner on or after the cause of a load exceeding or having exceeded a definable threshold. As soon as a definable cause of load exceeding arises the method can be activated or start automatically. Thus, a suitable load balancing of multiple charging stations can be provided.
Within a further preferred embodiment the method can be performed dynamically. In other words, the steps of the inventive method can be repeated after definable periods of time or in case of a definable event or within a definable time window.
For providing a very efficient use of the energy stations during the adaptation and/or selection a user preference and/or a traffic condition and/or a weather condition can be considered. Thus, an individual adaptation to individual situations and circumstances is possible.
Further preferred, during the adaptation and/or selection an ITS or data from an ITS can be exploited. In this way, a suitable adaptation to actual traffic situations is possible.
Further preferred, the energy-power-range limitation (ΔE, ΔP)p, lim for each charging station p can be adapted under consideration of a user interaction/feedback and/or user preference and/or real-time traffic condition. This provides the possibility of a quick adaptation of energy-power-range limitations in response to changed circumstances or preferences.
For realizing the inventive method or charging stations network according to an embodiment the adaptation and/or selection can be performed by a de-centralized management scheme or by a centralized management scheme. Depending on the individual situation a user can select the kind of the management scheme. Within a preferred embodiment the adaptation and/or selection can be performed by neighbored charging stations in a bi-lateral manner.
The charging stations network can comprise different functional entities. Preferably, said balancing means, said distributing means or said adapting and/or selecting means can comprise at least one of a communication system, route guidance or online route guidance, charging demand predictor, Energy Management System, EMS, of charging station or EMS control center.
Important aspects and features of embodiments of an embodiment of the inventive method and charging stations network are explained in the following:
An embodiment of the invention addresses the problem of utilizing intelligent transportation control in order to impact the charging load profiles in certain context requirements. A method for load balancing across a multitude of charging stations using charging demand prediction and traffic modifications—route guidance, incl. distances, speed, and break suggestions—to impact traffic-dependent delay and charging volume tolerance of EVs is provided in an embodiment. An embodiment of the invention provides a utilization of charging demand prediction or forecast, charging planning and traffic control actions in order to dynamically control the charging needs through aggregated time- and capacity-tolerant mobile loads. The proposed system can be based on the control of a charging station network of any kind—different power levels, energy levels, size, and service levels—within a load balancing scheme including local and remote charging stations, allowing for central as well as de-centralized control enforcement.
An embodiment of the invention can actively exploit the correlated parameter space between transportation—travel route guidance—, battery usage—speed/travel distance—, charging needs—SOC—, charging capacities of EV charging stations, EVCS, charging locations, grid balancing, etc. into a system for load balancing across a multitude of charging stations using charging demand prediction and traffic control to impact traffic-dependent delay and charging volume tolerance of EVs.
The proposed system in an embodiment can consider the integration of routing planners, route guidance, EV charging demand prediction into transforming the EVs into time- and capacity-tolerant mobile loads, so that these loads can be applied to load balancing between charging stations.
Besides the consideration of those domain-specific solution proposals, either in power grid, or in the ITS domain, the remaining issue is the usage of the coupling of both systems from the planning phase, including prediction, impacting the travel flow via distance and speed, up to the control of the power level in such a way, that different charging stations can cooperatively balance the load across multiple stations. An embodiment of the invention can address the means of controlling load levels within specific context boundaries—context here: combination of route and charging time, e.g. fastest route+charging+waiting time—to impact the load balancing of a given system.
Embodiments of this invention address the cooperative load balancing for a network of charging stations—locally diverse—by exploiting intelligent transportation services to gain a high utilization efficiency, and fulfill power constraints on the charging stations and/or charging stations network. The prime idea is to enable a system to impact the demand prediction and planning through the flexibility given by route guidance.
The proposed method according to an embodiment can be realized by a system comprising:
The aim of embodiments of the invention is to use intelligent transportation means in order to influence the charging patterns and to balance the charging demand (ΔE, ΔP) as function of time and location. Respecting user preferences like route requirements or time conditions, preferable charging mode, driving pattern—human style/factor—can be considered via the transportation guidance services. In this way, the method influences the EV charging demand profile by transforming the EVs into time- AND capacity-tolerant mobile loads.
In general, the method can be applied in a reactive manner on/after the cause of the critical load situation. Prediction allows to react to a some extent prior the cause of a possible event. The proposed method combines load forecast with means of controlling the load profile in time and location utilizing the mobility parameters, e.g. distance, direction, speed and external factors like traffic and weather conditions, of these mobile loads.
This method and charging stations network allow remote locations of charging stations, e.g. parking place companies with different locations in cities, fast charging network, charging networks of delivery companies and/or other fleet control companies, to impact the efficiency of their remote charging stations in the network, and fulfill power demands of the power grid network, e.g. time, location, grid dependencies.
Charging station networks can therefore gain an advantage in the energy market, as active load-balancing enabled customer, or even integrating with self-supply as active prosumers—as the method and charging stations network allow a better demand forecast for the individual stations and the serving charging network.
Depending on the time of day, additional energy services for non-used capacities can be created. Due to optimizing a high utilization of given power capacities without crossing the power limitations, the method and charging stations network increase the efficiency for the charging of the fleet, and integrating into intelligent transportation routing.
Further important aspects of embodiments of the present invention:
Embodiments of the present invention can comprise the following important features:
An embodiment of the present invention can comprise active transforming the EVs into time- AND capacity-tolerant mobile loads by impacting the charging profile for a certain point of location and time through modifications of transportation parameters for a set of location-distinct charging stations which are managed together for energy and power management.
Traffic control is already a wide-used method to impact transportation demand. The integration of these well-established services linked to the challenges of charging demands are still not considered well.
The proposed method according to an embodiment enables new services for various areas to actively enable load balancing for the new domain of EV charging on charging network scheme integrated into the control space of travel and logistics management.
Through exploitation of the method into planning and online guidance, charging infrastructure can be used more efficiently and leads to reduced costs. Well-managed networks are enabled to actively participate on energy service market (prosumers-type).
The method assumes a certain level of EV intelligence to communicate its travel and charging needs, and assumes cooperation with ITS services.
Embodiments of this invention provide a system or charging stations network and a method for cooperative load balancing in a network of charging stations—locally diverse—controlled by a EMS control center by exploiting intelligent transportation services to gain a high utilization efficiency, and fulfill power constraints on the charging stations and/or charging stations network. The prime idea is to enable a system to impact the demand prediction and planning through the flexibility given by route guidance. The EMS Control Center enables a balancing across the charging network as well as the serving of power/energy commands from the power grid aggregated over the charging stations network.
The proposed method according to an embodiment can be realized by a system or charging stations network comprising:
An embodiment of a system or charging stations network is illustrated in
The EMS control center is connected to the local EMS of the remote charging stations. The charging stations' EMS can retrieve charging demand forecast via so-called online routing guides, ORG. These ORGs analyze the routes—planned or online—of the registered EVs, and are able to provide route guidance for multiple routes to the EV following user and travel preferences, e.g. selection of streets, travel time, speed preferences, charging location network choices, etc. The ORGs integrate or link to Charging Demand Prediction service units to calculate the expected charging demand for selected routes. A data communication network connects all components either fixed or over mobile connections. Especially for the communication with the route guidance clients hosted in the EVs, e.g. in the onboard units, OBU, the adapted route guidance is communicated to the EV user, and is provided as guidance to the charging station.
In a preferred embodiment, the EMS control center negotiates the limits of the (ΔE, ΔP)k, lim ranges with each of the k charging stations as the first step. After finding the lowest cost solution, the individual EMSs of the k charging stations trigger the route adaption with the online route guide(s).
The method is considered to be dynamic, meaning that within a given time window for energy restriction request a fine-granulated adapting process can be applied realizing a continuous and more reactive process.
In the second step, each charging station EVCS will negotiate the possible route adaptations considering the traffic conditions, required stops, e.g. traffic signals, and durations, forced stops, e.g. traffic jams, in order to fulfill the given range limitation for energy and power.
An example implementation of an algorithm is presented in
In order to serve different users, user preferences, e.g. regarding route choices—like: sticking on main routes only—, waiting time settings through planned breaks, or even charging preferences, e.g. medium charging only on city trips, can be taken into account by the adjustment for travel parameters.
The charging stations network or system and method is flexible in respect to EV users who are not participating in the system, but appear as stochastic load on the EV charging network. Various methods for prediction of these loads can be used, integrating e.g. historical charging profiles and statistics for non-guided users.
In this preferred embodiment, the route guidance is considered as basis for the fleet logistics. The route guidance looks at objectives from both domains—energy and transport—and finds the best route for each EV to ensure the negotiated (ΔE, ΔP)k, lim ranges per station and for the station network.
In another embodiment, the fleet management can be handled in a different approach in order to respect e.g. impacts on delivery time handling or similar. In such case, the method of the two-step approach can be more tightly integrated in order to integrate EV user interaction and feedback into the process and enable a re-negotiation process with the EMS control center involving charging stations from the whole or partial network.
Integration of EV user interaction/feedback and/or real-time integration of traffic conditions can lead to (ΔE, ΔP)k, lim adaptation needs within the time period. To support real-time dynamics, the system can also be realized in a de-centralized management scheme for the re-negotiation of the (ΔE, ΔP)k, lim. Therefore in a further embodiment, the adaptations of neighbored charging stations can be installed as bi-lateral adaptions given by e.g. regional or economical context, and will be reported to the EMS control center, e.g. for (ΔE, ΔP)k, lim history records needed in fairness concepts.
In another embodiment, the online route guidance can enforce its route and travel adaptation needs through direct connection with the traffic control center in order to impact e.g. speed, re-routing—distances—and traffic lights—timings—for entire traffic—un-correlated fleet management—over large regions, e.g. high traffic points.
A further embodiment will extend the integration of traffic control and charging management into charging and logistics planning, up to charging booking services.
Many modifications and other embodiments of the invention set forth herein will come to mind the one skilled in the art to which the invention pertains having the benefit of the teachings presented in the foregoing description and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive. It will be understood that changes and modifications may be made by those of ordinary skill within the scope of the following claims. In particular, the present invention covers further embodiments with any combination of features from different embodiments described above and below. Additionally, statements made herein characterizing the invention refer to an embodiment of the invention and not necessarily all embodiments.
The terms used in the claims should be construed to have the broadest reasonable interpretation consistent with the foregoing description. For example, the use of the article “a” or “the” in introducing an element should not be interpreted as being exclusive of a plurality of elements. Likewise, the recitation of “or” should be interpreted as being inclusive, such that the recitation of “A or B” is not exclusive of “A and B,” unless it is clear from the context or the foregoing description that only one of A and B is intended. Further, the recitation of “at least one of A, B and C” should be interpreted as one or more of a group of elements consisting of A, B and C, and should not be interpreted as requiring at least one of each of the listed elements A, B and C, regardless of whether A, B and C are related as categories or otherwise. Moreover, the recitation of “A, B and/or C” or “at least one of A, B or C” should be interpreted as including any singular entity from the listed elements, e.g., A, any subset from the listed elements, e.g., A and B, or the entire list of elements A, B and C.
This application is a U.S. National Stage Application under 35 U.S.C. §371 of International Application No. PCT/EP2014/058050 filed on Apr. 22, 2014. The International Application was published in English on Oct. 29, 2015 as WO 2015/161862 A1 under PCT Article 21(2).
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/058050 | 4/22/2014 | WO | 00 |