Reference is made to commonly-assigned, copending U.S. patent application Ser. No. 11/204,223, filed Aug. 16, 2005, entitled PRINTING PLATE REGISTRATION AND IMAGING, by Neufeld et al., and U.S. patent application Ser. No. 11/693,007, filed Mar. 29, 2007, entitled PRINTING PLATE REGISTRATION USING A CAMERA, by Cummings et al., the disclosures of which are incorporated herein.
The invention relates to printing and, in particular to providing registered images on printing plates.
Printing plates may be imaged on a plate-making machine and then transferred to a printing press. Once on the printing press, the images from the printing plates are transferred to paper or other suitable substrates. It is important that images printed using a printing press be properly aligned with the substrate on which they are printed. Obtaining such alignment typically involves:
One common technique of aligning the printing plate on the drum of a printing press involves using the reference edge and the orthogonal edge reference point to align the printing plate on a punching machine and punching registration holes in the printing plate. The printing plate may then be aligned on the drum of the printing press with registration pins that project through the registration holes.
Traditionally mechanical alignment pins have been used to align the plate to be imaged to the drum of a platesetter. This is not a flexible arrangement. The pins have to be mounted in predetermined positions. There are also reliability challenges in consistently and accurately loading the plate into contact with the pins. It is also difficult to define sets of pins that allow a wide range of plate formats to be imaged whilst not interfering with one another.
There is therefore a need for an alignment mechanism not based on mechanical locating pins. A number of these have been proposed. Examples are disclosed in and in U.S. Pat. No. 6,318,262 (Wolber et al.) in both of which edge detection sensors are employed in the load path to an imaging drum upon which a printing plate is imaged. U.S. Pat. No. 4,881,086 (Misawa) also describes a laser recorder with sheet edge detection based on the principle of the difference in reflectivity between that of the sheet and that of the drum on which it is carried. EP 1 081 458 A2 (Elior et al.) teaches the use of an apparatus to determine a skew angle of the plate mounted on a plate support surface. U.S. Pat. No. 4,876,456 (Isono et al.) describes using photosensors having light emitting elements and light receiving elements disposed in a path for carrying a photosensitive film. EP 1 081 458 A2 describes an apparatus for detecting a plate edge using a light beam and detector.
In U.S. Pat. No. 6,815,702 (Kiermeier et al.) a method and apparatus are disclosed to locate an edge of an imageable plate mounted on a drum or other support surface. A light source and light sensor are used to measure the difference in reflectivity between the plate and the support surface. The drum or support surface contains at least one groove to increase the difference in reflectivity between the plate and the support surface. The groove may also contain an anti-reflecting layer to further increase the difference in reflectivity. The groove may also have a geometric shape that causes incident light to be directed away from the light sensor. U.S. Pat. No. 6,815,702 describes that, with the groove parallel to the drum axis, an edge of the plate is “generally perpendicular to the groove” when the plate is “properly mounted.” It also explains that the groove cannot be parallel to and positioned under the edge of the plate, as this makes precise detection of the plate “unreliable, and near impossible” by the method of the patent.
A further important aspect of the entire plate alignment process is the method of loading of the plate onto the imaging drum. While there is some description in the prior art of systems for correcting the placement of a plate on a drum, it is generally more effective to get the plate loaded as close to perfectly aligned as possible during the initial loading step. In the case of the method described in U.S. patent application Ser. No. 11/693,007, the fully loaded printing plate needs to be protruding over the slot and aligned as closely as possible with the edge of the slot.
U.S. Pat. No. 6,604,465 (Tice et al.) describes the loading of a printing plate onto an external drum while rotating the drum in a first direction. No mention is made of rotating the drum in another direction while loading the plate. While the patent does disclose a method for aligning of the printing plate without requiring any holes to be punched in the printing plate, alignment of the printing plate is in fact done using pins on the drum. The printing plate is then imaged while the drum is rotated in the first, or in a second, opposite direction. Finally, the printing plate is unloaded from the drum while rotating the drum in the second direction.
U.S. Pat. Nos. 6,260,482 and 6,189,452 (both to Halup et al.) respectively describe a method and apparatus for loading and unloading plates to external drum devices based on movable clamps. The system is characterized by clamps, ideally in pairs of which the members are circumferentially disposed with respect to each other, that are movable over the surface, preferably along circumferential tracks, enabling the attachment of multiple plates, end-to-end and/or side-by-side. To mount a printing plate on the drum, a first clamp of each relevant pair is first opened and then engaged to the leading edge of the printing plate, which is fed from a suitably positioned loading mechanism, and then releasing the clamps to grip the leading edge of the printing plate. The drum is then rotated in a first direction to pull the plate and wrap it around the drum. Then the other clamp of each pair is opened and the drum is rotated in a second opposite direction, while the clamp remains stationary, until the trailing edge of the plate is engaged by the clamp, whereupon the clamp is released, thus gripping the trailing edge by slidable clamps. After normal imaging operation, the plate is demounted in the same general order, by first releasing the first clamp of each pair (which grips the leading edge of the plate) and moving it away from the plate in the second direction of the drum, thus freeing that edge, then rotating the drum in the first direction, thus pushing the plate onto a suitably position unloading bin, and finally releasing the second clamp of the pair, thus freeing the plate. No mention is made of moving the drum in different directions in order to correctly position the plate on the drum.
U.S. Pat. No. 5,992,325 (Schumann et al.) describes a method for automatically detecting the trailing edge of a printing plate. The detecting can be the determination within a trailing edge clamp of either the location of the edge, or the determination of the presence of the trailing edge. To this end, a sensor is employed. This patent also discloses a method for loading the printing plate. The method starts, after release of the trailing edge of a previous plate, with the ejection of the previous printing plate, which is achieved by rotating the drum in a first direction to push the plate by its leading edge. The leading edge of that plate is then unclamped. The drum is then rotated in a second, opposite direction by a very small amount, enough to clear the leading edge of the previous plate. The drum is then rotated in the first direction again to receive the leading edge of a new plate into the same clamp from which the leading edge of the earlier plate has been ejected. The presence and or location of this leading edge is determined by the sensor. The printing plate is then clamped by its leading edge. The next step comprises rotating the drum in the second direction in order to wrap the printing plate on the drum. Suitable steps are taken to tauten the printing plate on the drum and to secure the trailing edge. While the patent describes small rotations of the drum to load and release the printing plate, it does not address the matter of alignment of the printing plate or its exact positioning relative to any possible slot in the drum.
In commonly-assigned U.S. patent application Ser. No. 11/204,223 an edge detection system is described, based on using a digital camera to image the edges of a printing plate perpendicular to the sub-scan direction. Based on the information so obtained, the image data is then adjusted to compensate for any misalignment between the plate and the drum on which it is loaded. In commonly-assigned U.S. patent application Ser. No. 11/693,007 an edge detection system is described, based on using a digital camera to image the leading edge of a printing plate. The system employs a slot in the cylindrical surface of an imaging drum, the slot having a radially recessed surface that has diffusely reflective surfaces and substantially non-reflective surfaces. The system allows the leading edge of a printing plate protruding over the slot to be located through the leading edge clamps by illumination with a suitable illumination source and imaging with a digital camera.
Commonly-assigned U.S. patent application Ser. No. 11/693,007, incorporated herein in full, requires a newly loaded printing plate to be protruding over the slot and aligned as closely as possible with the edge of the slot in the drum described in that patent application. The prior art does not describe how this is to be achieved.
The present invention constitutes a method for aligning a leading edge of one or more printing plates to a cylindrical axis of an imaging drum, the imaging drum comprising at least one leading edge printing plate clamp having a clamp surface disposed parallel to the cylindrical axis. The method comprises resting the leading edge on a cylindrical surface of the imaging drum and rotating the imaging drum in a reverse direction about a cylindrical axis to contact with the clamp surface a point along the leading edge and rotate the at least one printing plate until the leading edge is in alignment with the clamp surface.
In a further aspect, the invention constitutes a method for aligning a leading edge of one or more printing plates to an axially disposed slot in a cylindrical surface of an imaging drum, the imaging drum comprising at least one leading edge printing plate clamp having a clamp surface disposed parallel to the slot. The method comprises straightening the leading edge against the clamp surface by rotating the imaging drum in a reverse direction about its cylindrical axis and then rotating the imaging drum about its cylindrical axis in a forward direction until the leading edge protrudes over the slot by a predetermined amount. The straightening comprises resting the leading edge of the printing plate on the cylindrical surface of the imaging drum and rotating the imaging drum in a reverse direction about its cylindrical axis to contact with the clamp surface a point along the leading edge of the at least one printing plate and to rotate the printing plate until its leading edge is in alignment with the clamp surface.
In a further aspect the invention constitutes a method for determining an alignment of at least one printing plate relative to an imaging drum on which the at least one plate is mounted, the method comprising aligning to an axially disposed slot in a cylindrical surface of the imaging drum a leading edge of the at least one printing plate, determining a location of at least one point on the leading edge of the at least one printing plate; and determining the alignment of the printing plate at least in part from the location of at least a part of the leading edge in a digital camera image of the at least one point, and from a position of the digital camera, used for obtaining the digital image, relative to the imaging drum during the capturing of the at least one digital camera image of the at least one point.
In the drawings which illustrate non-limiting embodiments of the invention:
Throughout the following description, specific details are set forth in order to provide a more thorough understanding of the invention. However, the invention may be practiced without these particulars. In other instances, well known elements have not been shown or described in detail to avoid unnecessarily obscuring the invention. Accordingly, the specification and drawings are to be regarded in an illustrative, rather than a restrictive, sense.
The method of the present invention will now be described at the hand of
As a first step 200 (see
In a next step 210 (see
In a further embodiment of the present invention an additional next step 220 (see
The next step 230 (see
The next step 240 in both embodiments of the present invention (see
When the whole of printing plate 110 has been wrapped onto cylindrical surface 30, as in
To the degree that the leading edge of printing plate 110 may not be perfectly aligned to the edge of slot 70 after the application of the above steps, the image rotation method of commonly-assigned and copending U.S. patent application Ser. No. 11/693,007 can be used to detect and locate the leading edge of printing plate 110. As described in more detail in commonly-assigned and copending U.S. patent application Ser. No. 11/693,007, a location of at least one point on the leading edge of printing plate 110 is then determined. The resulting alignment of printing plate 110 can then be determined, at least in part, from the location of the at least one point in at least one digital image of the leading edge, taken with a digital camera, together with the known position of the digital camera relative to the imaging drum during the capturing of the digital camera image of the at least one point. Preferably, two points along the leading edge of printing plate 110 are determined in this fashion, and used to determine the alignment by the method of commonly-assigned and copending U.S. patent application Ser. No. 11/693,007. Based upon that information, the image may be rotated to compensate for such remaining misalignment, using the image rotation method described in commonly-assigned and copending U.S. patent application Ser. No. 11/693,007. The printing plate is then imaged.
The method of the present invention is simple, trouble free, and inexpensive, as it uses components that are necessarily already incorporated in typical imaging drums, like leading edge clamps and trailing edge clamps. It also avoids the loading problems typical of many prior art plate-making machines, in which plates need to rotate and register against pins in the drum. Such prior art systems and techniques require high loading force which can cause the plates to buckle and give imaging errors. This is particularly true of so-called very large format (VLF) printing plates, which are heavy and cumbersome. Given their large size, damage to such plates is often an expensive proposition and is best avoided.
The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4876456 | Isono et al. | Oct 1989 | A |
4881086 | Misawa | Nov 1989 | A |
5992325 | Schumann et al. | Nov 1999 | A |
6189452 | Halup et al. | Feb 2001 | B1 |
6260482 | Halup et al. | Jul 2001 | B1 |
6318262 | Wolber et al. | Nov 2001 | B1 |
6604465 | Tice et al. | Aug 2003 | B2 |
6722280 | Shih | Apr 2004 | B2 |
6736396 | Fukui | May 2004 | B2 |
6742455 | Fukui | Jun 2004 | B2 |
6815702 | Kiermeier et al. | Nov 2004 | B2 |
7124686 | Behrens et al. | Oct 2006 | B2 |
Number | Date | Country |
---|---|---|
1 081 458 | Mar 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20080264287 A1 | Oct 2008 | US |