This application claims priority to commonly-invented, commonly-assigned, co-pending United Kingdom patent application serial no. 0501929.4, filed Jan. 31, 2005.
The present invention relates generally to drilling and surveying subterranean boreholes such as for use in oil and natural gas exploration. In particular, this invention relates to a method for locating one or more casing string joints using a downhole measurement while drilling tool. Moreover, this invention relates to a method for sidetracking a new borehole out of an existing cased wellbore.
Subterranean wells are typically cased with a string of steel wellbore tubulars (piping) coupled end-to-end and cemented in place in the wellbore. The casing string is intended to prevent the wellbore from deterioration and also provides a conduit for produced hydrocarbons. It is often necessary to precisely locate one or more of the joints at which adjacent wellbore tubulars are coupled (e.g., a threaded joint where the male end of one tubular is threadably coupled to the female end of an adjacent tubular). This need arises, for example, when it is necessary to sidetrack an existing well.
Numerous downhole tools and methods are known in the art for locating casing joints (such tools are referred to herein—and commonly in the art—as casing collar locators or sometimes more simply as locators). For example, conventional casing collar locators typically rely on the generation of a strong magnetic field using either a permanent magnet or an electromagnet deployed on the locator. As the locator is moved past a collar, the flux density of the magnetic field changes due to the increased thickness of the collar. The change in magnetic flux produces an electric signal that is transmitted to the surface via a conventional wireline.
Such conventional casing collar locators suffer from many known operational disadvantages. For example, conventional locators are not particularly sensitive to changes in the casing string and thus tend to exhibit a low signal to noise ratio. Moreover, as a result of their insensitivity to changes in the casing string, conventional locators are essentially “collar” locators (rather than “joint” locators) and are generally not able to reliably detect other types of casing joints, such as box and pin joints (also referred to in the art as flush joints). Furthermore, and also as a result of their insensitivity to changes in the casing string, conventional locators are generally only reliable when they are moved rapidly through the wellbore. If the locator is moved too slowly, the changes in signal indicative of the presence of a collar may be too gradual to be conclusively recognized.
More recently, other casing collar locators have been developed to address some of the aforementioned drawbacks with conventional casing collar locators. For example, U.S. Pat. No. 5,720,345 to Price et al. and U.S. Pat. Nos. 6,411,084 and 6,815,946 to Yoo disclose downhole tools that detect magnetic fields indicative of the presence of the casing joints. Price et al. discloses a magnetometer based wireline tool. The magnetic field is continuously measured while the tool is moved through the casing string. It is further disclosed that the magnetic field inside the casing changes at a maximum rate at the casing joint as the wireline tool is moved past the joint. Yoo discloses a wireline tool including a giant magnetoresistive sensor intended to detect perturbations in the earth's magnetic field caused by anomalies in the casing string. Such anomalies are disclosed to include gaps between casing tubulars, enlarged casing wall thickness due to external collars, and air gaps in the threads of a casing joint. Yoo also discloses detection of other anomalies not associated with casing joints such as perforations and damage to the casing string.
The aforementioned devices overcome some of the limitations of conventional casing collar locators, in particular, in that they are more sensitive to changes in the casing string. Despite the advances disclosed by Price et al. and Yoo, the use of such casing collar locators is disadvantageous for certain applications. For example, casing collar locators known in the art (including those described above) are wireline tools. As such, their use requires a separate wireline run into the borehole to determine the locations of various casing joints. As described in more detail below, a typical sidetracking operation includes running a wireline casing collar locator into the borehole to determine the location of a particular casing joint and to set a bridge plug. Only after the bridge plug has been set and the wireline tool removed from the borehole can the drill string and accompanying whipstock be lowered into the borehole. Sidetracking operations including wireline runs are known in the art to be both time consuming and expensive.
Therefore there exists a need for an improved method for locating casing joints. In particular, there exists a need for a measurement while drilling based method for locating casing joints that does not require a separate wireline run into the borehole.
Exemplary aspects of the present invention are intended to address the above described drawbacks of prior art apparatuses and methods for locating wellbore casing joints. One aspect of this invention includes a method utilizing an MWD tool to detect a casing joint in a cased wellbore. In one exemplary embodiment, a drill string including a magnetic field sensor is deployed in a cased borehole. Magnetic field measurements may be acquired, for example, at a plurality of longitudinal positions in the wellbore and transmitted uphole. Changes in the measured magnetic field may then be utilized to determine the location of one or more casing joints. Embodiments of this invention may be utilized to locate one or more casing joints in a sidetracking operation in which a new well is drilled from the side of an existing cased wellbore.
Exemplary embodiments of the present invention may advantageously provide several technical advantages. For example, embodiments of this invention may be utilized to locate substantially any type of casing joint. Moreover, exemplary embodiments of this invention may be utilized to sidetrack a cased wellbore. Use of this invention in sidetracking operations may therefore obviate the need for a separate wireline run to locate the casing joints, thereby potentially saving significant rig time.
In one aspect the present invention includes a method for locating at least one casing joint in a cased wellbore having a substantially permanent magnetization. The method includes deploying a magnetic field measurement device in the cased wellbore, the magnetic field measurement device coupled to a drill string and positioned to be within sensory range of magnetic flux from the substantially permanent magnetization. The method further includes measuring the magnetic flux along a length of the cased wellbore using the magnetic field measurement device and evaluating changes in the magnetic flux measured in (b) along the length of the wellbore to locate the at least one casing joint.
In another aspect, this invention includes a method for sidetracking a cased wellbore having a substantially permanent magnetization. The method includes deploying a drill string in the cased wellbore, the drill string including a magnetic field measurement device and a drill bit assembly deployed thereon. The magnetic field measurement device is positioned to be within sensory range of magnetic flux from the substantially permanent magnetization. The method further includes measuring the magnetic flux along a length of the cased wellbore using the magnetic field measurement device to locate at least one casing joint and milling an opening in the cased wellbore using the drill bit assembly at a position selected to avoid milling through the located casing joint.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realize by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
Referring to
In the exemplary embodiment shown, sensor 120 may be considered as determining a plane (defined by MX and MY) orthogonal to the borehole axis and a pole (MZ) parallel to the borehole axis, where MX, MY, and MZ represent measured magnetic field vectors in the x, y, and z directions. As described in more detail below, exemplary embodiments of this invention may only require magnetic field measurements along a single axis (e.g., along the axis of the borehole). As such, embodiments of this invention are not limited to the use of a tri-axial magnetic field sensor such as that shown on
In one advantageous embodiment, sensor 120 is configured for conventional MWD magnetic field measurements (e.g., measurements of the relatively weak magnetic field of the earth for use in conventional borehole surveying). In such embodiments, sensor 120 may include, for example, a conventional tri-axial magnetometer. Suitable magnetometer packages are commercially available, for example, from MicroTesla, Ltd., or under the brand name Tensor (™) by Reuter Stokes, Inc. It will be understood that the foregoing commercial sensor packages are identified by way of example only, and that the invention is not limited to any particular deployment of commercially available sensors.
Embodiments of this invention utilize measurements of the remanent magnetization in conventional casing tubulars to determine the location of casing joints. Such remanent magnetization is typically residual in the casing string because of magnetic particle inspection techniques that are commonly utilized to inspect the threaded ends of individual casing tubulars for cracks and other defects. The magnetic particle inspection techniques produce a highly localized, strong magnetic field at the ends of the casing tubulars, and consequently at the casing joints in the borehole. Between casing joints, the remanent magnetic field is typically considerably weaker than at the joints.
It will be appreciated by those of ordinary skill in the art, that the magnetic field of the earth is relatively weak as compared to the remanent magnetic field inside the casing string. For example, it is well known that such remanent magnetic fields interfere with reliable azimuth determination in and around a cased borehole. Thus, in an embodiment suitable for conventional MWD applications, sensor 120 may be calibrated to be sensitive to small magnetic fields (so that it may reliably measure the magnetic field of the earth). For example only, in one embodiment sensor 120 may include a tri-axial magnetometer (as described above) calibrated to have a sensitivity of 0.00002 Gauss along each of its three axes. It will also be appreciated that the magnetic fields in the casing string, and in particular those in close proximity to casing joints, may be significantly greater than the saturation value of sensor 120. For example, the strength of the magnetic field in the casing string may sometimes exceed 10 Gauss, as compared to a saturation threshold for the sensor of less than about 1.0 Gauss in one exemplary embodiment. As described in more detail below, exemplary methods of this invention make use of such sensor saturation along particular axes to assist in determining casing joint location. However, the invention is not limited to any particular ranges of sensor sensitivities or saturation values.
With continued reference to
As the sensor approaches a casing joint, both the magnitude and direction of the magnetic field inside the casing string typically change. This is shown schematically on
It will be appreciated that, in practice, changes in the local magnetic field at the casing joints are often more complex than that described above with respect to
Referring now to
Turning now to
It will also be appreciated that while the sensor is saturated at both 310 and 316, even in its saturated state, it nevertheless indicates the relative axial direction of the magnetic field (e.g., positive at 310 and negative at 316). At some casing joints (such as casing joints 205 shown on
Turning now to
At many other casing joints, only one of the cross-axial components (x and y) saturates the sensor. This may occur, for example, because the cross-axial component of the magnetic field is closely aligned with either the x or y components of the sensor (e.g., within about 30 degrees thereof). In such instances, there is often a dip 364 or an inflection 366 in TMF(xy) at or near the casing joint that indicates the location of the joint (e.g., joints 352B and 352C). Such dips and/or inflections may be caused, for example, by a local distortion of the magnetic field at the casing joint causing a small change in the direction of the field (e.g., less than about 30 degrees). Nevertheless, dips and/or inflections in TMF(xy) may often be used to more accurately determine the location of the casing joints. Moreover, rotation of the drill string at the surface (which changes the tool face of the sensor) may be utilized to induce such dips and/or inflections in TMF(xy). Thus, in some applications, it may be advantageous to acquire a plurality of magnetic field measurements at a corresponding plurality of sensor tool faces at one or more locations in the borehole. In this manner it may be possible to more accurately determine the location of a particular casing joint.
The hypothetical examples described above with respect to
In many applications the length of the casing tubulars is known, e.g., from a casing log kept during the casing operation. Comparison of the known length of particular casing tubulars with the measured spacing between joints (e.g., as shown at 325 and 375 on
Referring now to
While the magnetic field data shown on
In recent years, many subterranean drilling operations have begun to reenter and sidetrack existing cased wells, for example, to take advantage of newer drilling and production technologies. In such sidetracking operations, one or more new wells are drilled from the side of an existing cased well. In general, it is undesirable to sidetrack an existing well at a casing joint, since the joint may prevent the bridge plug or whipstock from setting properly in the casing. Furthermore, milling through a joint or collar is often difficult and may result in a jagged opening in the casing string. The jagged opening may cause difficulties in running new casing string and/or various downhole tools into the new well. Moreover, drilling through a casing joint may damage the structural integrity of the casing. Thus, in general, it is desirable to sidetrack wells at “blank” regions of the casing string between adjacent casing joints.
During a typical conventional sidetracking operation, a wireline casing collar locator is used to locate a series of casing joints. This necessitates a separate wireline run into the cased wellbore. Upon locating a predetermined casing joint (or joints), a bridge plug is set (typically a few feet uphole of a casing joint) and the wireline tool is removed from the wellbore. A drill string including a drill bit assembly (also referred to in the art as a milling tool) and a whipstock is then lowered into the wellbore. The whipstock is typically oriented at a predetermined tool face using conventional gyroscope measurements. The whipstock is then set on the bridge plug and an opening is milled through the casing string. As stated above, the necessity of using a separate wireline run into the well is both time intensive and expensive.
Moreover, accurate positioning of wireline tools is known to be difficult in high inclination applications (i.e., near horizontal wells). In high inclination sidetracking operations, some drilling operators elect to forego location of the casing joints at the considerable risk of milling through such joints. In such an approach a drill string including a milling assembly and a packstock (a whipstock including a packer assembly) is deployed in the wellbore. The packstock is typically positioned based upon measured depth and a casing string log. Unfortunately, due at least in part to the bending of the drill string in deviated wells, this approach is often characterized by a low degree of positional accuracy, which sometimes results in the well being sidetracked at a casing joint (or a failure in the sidetracking operation due to the above described difficulties in sidetracking at a casing joint).
Referring now to
With continued reference to
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alternations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
0501929.4 | Jan 2005 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
5429190 | Kilgore et al. | Jul 1995 | A |
5720345 | Price et al. | Feb 1998 | A |
6192748 | Miller | Feb 2001 | B1 |
6411084 | Yoo | Jun 2002 | B1 |
6815946 | Yoo | Nov 2004 | B2 |
Number | Date | Country |
---|---|---|
2387657 | Oct 2003 | GB |
2405212 | Feb 2005 | GB |
2405213 | Feb 2005 | GB |
WO 02099250 | Dec 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060173626 A1 | Aug 2006 | US |