The present invention relates to a method for ultra-low NOx combustion of high hydrogen content fuels. In one embodiment, the present invention provides a method for lowering the adiabatic flame temperature of a fuel prior to non-premixed combustion.
With energy usage directly related to economic growth, there has been a steady increase in the need for increased energy supplies. In the U.S., coal is abundant and comparatively low in cost. Unfortunately, conventional coal-fired steam plants, which are a major source of electrical power, are inefficient and pollute the air. Thus, there is a pressing need for cleaner, more efficient coal-fired power plants. Accordingly, Integrated Gasification Combined Cycle (“IGCC”) coal technology systems have been developed which can achieve significantly improved efficiencies in comparison to conventional steam plants. In such a system, syngas (a mixture of hydrogen and carbon monoxide) is produced by partial oxidation of coal or other carbonaceous fuel. This allows cleanup of sulfur and other impurities, including mercury, before combustion.
Concern over global warming resulting from carbon dioxide emissions from human activity, primarily the combustion of fossil fuels, has led to the need to sequester carbon. If carbon sequestration is desired, the carbon monoxide can be reacted with steam using the water gas shift reaction to form carbon dioxide and hydrogen. Carbon dioxide may then be recovered using conventional technologies known in the art. This allows pre-combustion recovery of carbon dioxide for sequestration.
As a result of the high flame speed of hydrogen, flashback is an issue with premixed dry low NOx combustion systems. Flashback remains an issue with the use of syngas as well. Regardless of whether carbon dioxide is recovered or whether air or oxygen are used for syngas production, hydrogen content of the gas typically is too high to allow use of conventional dry low NOx premixed combustion for NOx control. Therefore, diffusion flame combustion is used typically with steam or nitrogen added as a diluent to the syngas from oxygen blown gasifiers to minimize NOx. Even so, exhaust gas cleanup still may be required. Thus, such systems, though cleaner and more efficient, typically cannot achieve present standards for NOx emissions without removal of NOx.
A further problem is that the presence of diluent in the fuel increases mass flow through the turbine often requiring the bleeding off of compressor discharge air. Since bleed off of compressor air must be limited to allow sufficient air for combustion and turbine cooling, the amount of diluent which can be added to the fuel is limited. Typically, NOx cannot be reduced below about ten parts per million (“ppm”) without operational problems, including limited flame stability.
There are further efficiency loss issues. If nitrogen is added to dilute the fuel gas, there is an energy penalty related to the need to compress the nitrogen to the pressure required for mixing with the fuel gas. In addition, use of syngas in a gas turbine designed for natural gas increases turbine mass flow even without syngas dilution. Typically, to avoid excessive loads on the turbine rotor, operation is at a reduced turbine inlet temperature and/or with bleed of compressed air from the turbine compressor.
Accordingly, improved combustion systems are needed.
It has now been found that using a reactor such as that described in U.S. Pat. No. 6,394,791, the stoichiometric flame front temperature (“SFFT”) of high hydrogen content fuels can be reduced sufficiently to provide ultra-low NOx non-premixed combustion. By reacting a sufficient amount of a fuel under fuel rich conditions and transferring at least a portion of the heat of reaction to combustion air, the SFFT is reduced.
As shown for the example combustor 10 in
For conventional hydrocarbon fuels, including methane, the reduction in the heat liberated in the flame is not near enough for low NOx production in modern gas turbines. As shown in
An important aspect of the present invention is that the adiabatic stoichiometric flame temperature of high hydrogen content fuels can be reduced sufficiently to allow ultra low NOx diffusion flame combustion, even for the highest inlet temperature gas turbines thus allowing wide turndown. At the operating temperatures of many turbines, low NOx is achievable with air splits as low as ten or fifteen percent. With the need for carbon sequestration becoming increasing important, the art has turned to carbon-free hydrogen such as can be produced from syngas. Nitrogen dilution of the fuel may be used for NOx control. Unfortunately, a high dilution is required to reach even ten to 15 ppm NOx.
As shown in
The maximum allowable air split is determined by the allowable material temperatures. Thus, as shown in
While the present invention has been described in considerable detail, other configurations exhibiting the characteristics taught herein for efficient and effective heat transfer mechanisms, either catalytically or non-catalytically, are contemplated. For example, other catalytic reactor designs are contemplated as well as non-catalytic gas phase combustion. Therefore, the spirit and scope of the invention should not be limited to the description of the preferred embodiments described herein.
This application claims the benefit of U.S. Provisional Application No. 60/683,719 filed May 23, 2005.
Number | Date | Country | |
---|---|---|---|
60683719 | May 2005 | US |