Single wall carbon nanotubes (SWNTs) were first discovered by scientists at NEC and IBM in 1993. Today SWNTs are synthesized by three main methods: arc discharge, pulsed laser vaporization, and chemical vapor deposition. The growing interest in SWNTs for applications and for fundamental science demands new approaches and flexibility for the synthesis. Chemical vapor deposition (CVD) is considered by many to be the only viable approach for a large scale production of SWNTs. As a result, research is underway to optimize the CVD approach, i.e., to investigate the effect of the catalyst composition, variation of supporting/substrate materials, synthesis temperature and hydrocarbon gases. Co—Mo metal catalysts have been found recently to be able to selectively produce SWNTs at 700° C. using carbon monoxide as the carbon source. Fe/Mo bimetallic catalysts have also been evaluated for SWNT production from methane at high temperatures 900° C. Synthesis of SWNTs at temperatures between 700 and 850° C. by catalytic decomposition of carbon monoxide and ethylene on alumina supported Fe/Mo catalysts has also been reported.
Single wall carbon nanotubes can be synthesized using chemical vapor deposition (CVD) under methane gas flowing at temperatures as low as 600° C., preferably the temperature is at least 650° C., and more preferably the temperature is at least 680° C., and at most less than 900° C., using an alumina supported Fe— or Fe/Mo containing catalyst.
The present invention is directed towards a method of producing single wall carbon nanotubes which comprises providing a catalyst comprising an alumina support and a component selected from the group consisting of reduced Fe, reduced Fe/Mo, Fe oxide, and Fe/Mo oxide, and growing, in an inert atmosphere, single wall carbon nanotubes by passing a gas comprising methane over the catalyst at a temperature and for a time sufficient to grow single wall carbon nanotubes.
The invention is also directed towards a single wall carbon nanotube produced by such a method.
The invention is also directed towards a catalyst for producing SWNTs, wherein the catalyst comprises an alumina support and a component selected from the group consisting of reduced Fe, reduced Fe/Mo, Fe oxide, and Fe/Mo oxide.
The present invention is directed towards a process of producing SWNTs. This method comprises providing a catalyst that comprises an alumina support and at least one component selected from the group consisting of Fe oxide Fe/Mo oxide, reduced Fe and reduced Fe/Mo, and then growing SWNTs in an atmosphere comprising an inert gas by passing a gas that comprises methane over the catalyst at a temperature and for a time sufficient to grow SWNTs. Preferably, only one component is used. The present invention is also directed towards a SWNT produced by using the above described process. The invention is also directed towards a catalyst for producing SWNTs, wherein the catalyst comprises an alumina support and at least one (preferably one) component selected from the group consisting of reduced Fe, reduced Fe/Mo, Fe oxide, and Fe/Mo oxide.
While the atmosphere used in the method is preferably inert, it is even more preferred that the inert gas be argon. Additionally, it is preferred that argon be used as the inert gas with which the methane is mixed.
Additionally, the temperatures at which the SWNTs may be grown are dependent upon the component used in the catalyst. If the catalyst comprises Fe/Mo oxide, then the temperature is preferably more 600° C., but less than 900° C. Even more preferably, it is about 680° C. or higher. When the catalyst comprises reduced Fe, it is preferred that the temperature remain higher than 600° C., preferably about 680° C. or higher, but less than 900° C. Additionally, when the catalyst comprises reduced Fe/Mo, it is preferred that the temperature be higher than 600° C., preferably about 680° C. or higher, but less than 900° C. Finally, if the catalyst comprises Fe oxide, it is preferred that the temperature be more than 800° C., but less than 900° C.
Further, it is preferred that when the component of the catalyst is selected from the group consisting of reduced Fe or Fe oxide, the ratio of Fe to alumina is about 1-8:1-24 by weight percent. It is even more preferred that the ratio be about 1:16. If the component of the catalyst is selected from the group consisting of reduced Fe/Mo or Fe/Mo oxide, the ratio of Fe:Mo:alumina is preferred to be about 1-8:0.01-0.5:1-24. It is even more preferred that the ratio be about 1:0.2:16.
In a preferred embodiment of the process, the methane is applied at a rate of 40-100 cc/min and the inert gas that the methane is mixed with is applied at 300-400 cc/min. It is additionally preferred that the SWNTs are grown for a time of 15-120 minutes. It is even more preferred that the time be about 90 minutes in length.
Another embodiment of the present process allows for the reduction of a Fe oxide or a Fe/Mo oxide prior to the formation of the SWNTs. This step involves reducing a Fe oxide or a Fe/Mo oxide component with a gas capable of reducing the Fe oxide component or the Fe/Mo oxide component to form a respective reduced Fe or a reduced Fe/Mo component. This step takes place prior to the formation of the SWNTs in the inert atmosphere. Preferably, it occurs after the Fe oxide or the Fe/Mo oxide is loaded onto the alumina substrate. Also, the gas used is, preferably, an H2/He mix. It is also preferred that the reducing gas be applied at a rate of 10-1000 cc/min, preferably about 100 cc/min, of 10:90 wt % H2/He gaseous mix. However, the ratio of the H2/He gaseous mix may be in the range of about 1-20:80-99 wt %. It is also preferred that the gas be applied to the Fe or Fe/Mo oxide for 30 minutes-30 hours at a temperature in the range of 300-600° C. It is even more preferred that the gas be applied for a time of about 10-20 hours at about 500° C.
Aluminum oxide—supported (Fe) or (Fe/Mo) catalysts with different molar ratios were prepared by adding Fe(NO3)3.9H2O or Fe2(SO4)3.5H2O and (NH4)6Mo7O24.4H2O methanol/aqueous solutions into methanol solutions containing ˜2 μm diameter Al2O3 particles. The mixture was stirred for about 1 hour to produce a homogenous catalyst. The solvent was then evaporated and the cake heated to 90-100° C. for 3 hours. After grinding with an agate mortar, the fine powders were calcined for 1 hour at 400-500° C. and then ground again before loading into the CVD apparatus.
The catalyst compositions were confirmed using energy dispersive X-ray electron dispersion spectra (EDX) analysis. The apparatus for the CVD growth of SWNT used in this work consisted of a quartz tube flow reactor (38 mm i.d. and 90 cm long) located in a three-zone horizontal tube furnace. Catalyst samples (30-80 mg) were placed in a quartz boat at the center of the reactor tube in the furnace. After reduction of the Fe/Mo oxide catalyst in a 100 cc/min flow of 10% H2/90% He (99.9%) at 500° C. for 10-20 hours, the gases were replaced by argon (99.99%) and the temperature was raised at ˜10° C./min to the growth temperature.
SWNTs were grown by passing a mixture of methane (40-100 cc/min) diluted in argon (300-400 cc/min) over the catalyst at a temperature in the range 680-900° C. for 30-90 min. The reactor was then allowed to cool to room temperature with argon gas flowing. The product was then weighed to determine the carbon yield of the CVD process. Yield is defined as (mf−mo)/mo, where mf and mo are, respectively, the final mass of the catalyst with carbon deposit and the initial mass of the catalyst. It should be noted that not all the carbon mass was present in the form of SWNTs. Raman scattering results from the SWNTs were used to measure the tube yield.
The Fe and Mo salts (99.999%) and alumina support (99.9%) were obtained from Alfa AESAR company. The gases used in this work, methane (99.99%), argon (99.99%) and 10% H2/90% He (99.9%), were obtained from MG Industries. Reactor gas flow was controlled by use of electronic mass flow controllers (BOC Edwards).
The structure of carbon materials was studied with a transmission electron microscopy (JEOL JEM 1200EX) at 120 KV. Raman scattering spectra were collected using a Bomem DA3+FT Raman Spectrometer (Hartman and Braun) using Nd:YAG laser excitation (λ=1064.5 nm) at 0.4 mW power. A JY-ISA HR460 single grating spectrometer with CCD detector with a “supernotch” filters (Kaiser Optical) was used to collect Raman spectra with 488 nm excitation from an Argon ion laser.
A second series of experiments was conducted using the same Fe and Fe/Mo catalysts but they were first reduced under flowing 10% H2/90% He gas. Fe and Fe/Mo catalysts were loaded in different concentrations on the alumina support and SWNT growth was studied for temperatures in the range 600-900° C. The reduction in H2 was found to activate the Fe catalyst, producing SWNTs at 680° C.
The evolution of the Raman spectrum with growth temperature for the carbon materials produced with metal oxide Fe and Fe/Mo catalysts is shown in
a and 3b show Raman spectra collected using 488 nm and 1064 nm excitation wavelengths. The spectra give a clear indication of the effectiveness of catalyst in oxidized or reduced form and operating at the temperatures indicated. For example,
Finally, the effect of the catalyst loading on the SWNT produced was examined, using Raman Scattering from the tubes as a qualitative probe.
Finally, the concentration of Mo relative to Fe on the support has been varied. This study was made at 680° C. The max yield of SWNTs synthesized at 680° C. using the activated in H2 catalyst was observed for Fe:Mo:Al2O3=1:0, 2:16 his yield was found to be 18 wt %.
This application claims the benefit of U.S. Provisional Application 60/344,215 which was filed on Dec. 28, 2001, said application being incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4663230 | Tennent | May 1987 | A |
4855091 | Geus et al. | Aug 1989 | A |
5149584 | Baker et al. | Sep 1992 | A |
5165909 | Tennent et al. | Nov 1992 | A |
5547748 | Ruoff et al. | Aug 1996 | A |
5593740 | Strumban et al. | Jan 1997 | A |
5653951 | Rodriguez et al. | Aug 1997 | A |
5780101 | Nolan et al. | Jul 1998 | A |
5866434 | Massey et al. | Feb 1999 | A |
5872422 | Xu et al. | Feb 1999 | A |
5973444 | Xu et al. | Oct 1999 | A |
5997832 | Lieber et al. | Dec 1999 | A |
6099965 | Tennent et al. | Aug 2000 | A |
6333016 | Resasco et al. | Dec 2001 | B1 |
6413487 | Resasco et al. | Jul 2002 | B1 |
Number | Date | Country |
---|---|---|
0056004 | Jan 1986 | EP |
Number | Date | Country | |
---|---|---|---|
20040091416 A1 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
60344215 | Dec 2001 | US |