The present invention relates generally to a wireless communications system including an airborne repeater, and particularly to dynamic maintenance of a terrestrial cell site handoff list for an airborne cellular system.
The increasing need for wireless networks and communication capabilities in outlying and geographically diverse locations has created greater demand for wireless systems. Many of the new carriers providing the infrastructure for such systems have focused their resources on building as many terrestrial cell stations as possible. As a result, the carriers expand their respective areas of coverage and consequently generate more revenue.
However, the buildout rate for the terrestrial base stations is typically slow and expensive, especially in mountainous areas and sparsely populated areas having few roads and minimal infrastructure buildout. In addition, in some the above-mentioned sparsely populated areas, a carrier's return on investment may not provide the incentive necessary for the carrier to build the necessary cell stations, thereby leaving these areas with either limited service or no wireless service at all. Further, many areas having a sufficient number of wireless communications base stations to handle calls during both off-peak and peak times cannot adequately handle temporarily large volumes of calls during sporting events or other special events that attract large crowds for just a few days.
In response to the above, airborne wireless systems have been proposed in which a wireless repeater mounted in an airplane, flying a predetermined flight pattern over a geographic area requiring wireless coverage, links calls from wireless phones within the covered geographic area to a terrestrial base station and other terrestrial infrastructure components. Because the airplane is capable of traversing geographic limitations and takes the place of the cell stations, such a system overcomes the above-mentioned problems.
Despite its many advantages, an airborne cellular system presents design and implementation considerations not present in the design and implementation of conventional terrestrial cellular systems. One primary consideration relates to maintaining a list of cell station call handoff candidates. Conventional cellular standards and protocols such as TIA/EIA 136, GSM and CDMA IS-95 provide for such handoff candidates. In terrestrial cellular systems, the handoff candidates are controlled in the system switch and are communicated to the handsets for power monitoring. The switch then makes hand-off decisions based on power measurement reports from the handsets. The number of hand-off candidates supported by the protocol is limited and typically does not vary with time. For example, the number of candidates is limited to 24 in the cellular TIA/EIA 136 protocol.
In an airborne cellular system, as the airplane circles in its flight pattern, communications beams radiated from the airplane antenna move relative to the ground thereby causing the system to perform call handoffs as beams rotate into and out of predetermined system areas of coverage. As an airborne cellular system covers a typically broad geographic area, each system beam potentially interacts with a large number of terrestrial cell sites. Therefore, it is likely that the total number of terrestrial cell sites that any given beam interacts with will exceed a number of handoff candidates supported by the given cellular protocol.
In addition, an airborne cellular system provides geographic coverage at the expense of large call capacity. Therefore, if an airborne cellular system were deployed in a predominantly low-density region that has pockets of high density, it would be desirable for a service provider to build terrestrial system cell stations in the high-density pockets and provide service to the remaining low-density areas with an airborne cellular system or systems. However, communications beams from the airborne cellular system would likely overlap with those of the terrestrial system cell stations. As the terrestrial system cell stations would typically have higher power than the communications beams of the airborne cellular system, system users would tend to gravitate to the terrestrial system cell stations in overlapping areas.
Users in areas not covered by terrestrial cell stations initially communicate through the airborne cellular system and can potentially switch over to the terrestrial system, as it may be desirable to hand off user calls from the airborne cellular system to the terrestrial system cell stations to reduce capacity on the airborne cellular system. As there are often hundreds of hundreds of terrestrial system cell stations, the airborne cellular system must generate a corresponding handoff candidate list that includes hundreds of cell station handoff candidates. Unfortunately, such a handoff candidate list is currently beyond the capability of standard cellular protocols and clearly a need exists for solutions to the foregoing problems.
Advantages of the present invention will be readily apparent from the following detailed description of preferred embodiments thereof when taken together with the accompanying drawings in which:
Referring now to the drawings in which like numerals reference like parts,
The cellular infrastructure segment 12 includes a mobile switching office (MSO) 24 that includes equipment, such as a telephony switch, voicemail and message service centers, and other conventional components necessary for cellular service. The MSO 24 connects to the PSTN 20 to send and receive telephone calls in a manner well known in the art. In addition, the MSO 24 is connected to an operations and maintenance center (OMC) 26 from which a cellular system operator manages the cellular infrastructure segment 12. The MSO 24 is also connected to one or more base transceiver stations (BTSs) such as the BTSs at 30a, 30b. The BTSs 30a, 30b transmit and receive RF signals from the system users 18 through the radio infrastructure segment 14.
More specifically, the BTS 30 transmits and receives RF signals through ground converter equipment 32. The ground converter equipment 32 converts terrestrial cellular format signals to C-band format signals and communicates with the airborne payload 22 through a feeder link 33 and a telemetry link 34, each of which will be discussed later in detail. The payload 22 establishes a radio link 36 for connecting calls over a wide geographic area of coverage, or footprint, that is capable of exceeding 350 km when the airplane maintains a flight pattern at or around 30,000 feet above the ground.
In addition to the airplane 35, the airplane segment 16 also includes an airplane operations center 37 that controls mission logistics based at least in part on information from sources such as a weather center 38, and manages all system airplanes, as the system preferably includes three airplanes to ensure continuous coverage. The airplane also receives additional routine instructions from sources such as an air traffic control center 40.
In the airplane segment 16, the airplane telemetry antenna 52 mentioned above transmits airplane avionics data generated by airplane avionics equipment, represented generally at 58, including airplane location, direction and flight pattern data as well as other data such as airplane pitch, roll and yaw data. The data from the airplane avionics equipment 58 is input into and processed by a payload processor 60 before being output to the telemetry antenna 52 through a telemetry modem 62. The payload processor 60 is also responsible for processing signals transmitted to and received from the ground converter equipment 32 through the feeder link 33 established between the C-band antennas 42, 56 and for processing; signals transmitted to and received from the system users 18 through a downlink, or user link, 69 established between the users 18 and a payload downlink antenna such as an 800 MHz antenna 70, with the signals received by and transmitted from the payload being appropriately upconverted or downconverted by an 800 MHz converter 72. The payload 22, in addition to including the above-mentioned equipment, also includes GPS equipment 74 that can also be input into the processor 60 and transmitted to the ground converter equipment 32 or to the airplane operations center 37 for flight control and/or monitoring purposes. The components shown in the airplane and in the payload together form the airplane repeater that enables cellular coverage to be provided to a large geographic area that may otherwise not support terrestrial cellular coverage due to an insufficient number of cell stations or the like.
As should be appreciated from the system configuration shown in
Still referring to
When initiating a call, a system user, such as one of the users 18, utilizes the control channels in the beam to signal the MSO 24 to request a call setup. The request is sent from a handset of the user 18 to the airplane payload 22, and then is relayed to the ground converter equipment 32. The ground converter equipment 32 relays the request to the corresponding BTS, such as the BTS 30a. The BTS 30a then transmits the request to the MSO 24, which sets up the call with the PSTN 20. The payload 22 therefore simply extends the physical layer of the BTS 30 to the users 18 to allow a much wider area of coverage than would typically be provided by a conventional terrestrial system, and with less associated infrastructure buildout cost. The airborne system 10 is also preferable for providing temporary cellular coverage for special events areas, where coverage is only needed for several days, thereby eliminating the need and cost associated with erecting cell is stations and then tearing the cell stations down after the special events end.
Once the call setup is completed, voice communication with the PSTN 20 through the traffic channels in the beam is initiated, and voice information is then relayed in the same manner as the signaling information. When the call ends, a signal is sent to the MSO 24 to tear down the call, the handset of the user 18 releases the traffic channel used for voice communications, and the channel is returned to an idle state.
Each of the beams, such as the beam 93, therefore sweeps out a large area and potentially overlaps with many terrestrial sites. A static handoff candidate list would require having not only those terrestrial sites currently under the beam, such as sites A1 and A3, and those sites that will soon be under the beam, such as sites A2 and A4, but also sites B1 and B2. Therefore, a system handoff candidate limit, which is typically 24 candidates, may be far exceeded.
To reduce the number of candidates, the beam handoff candidate maintenance technique in accordance with the present invention initially generates the handoff list as a function of beam location. Therefore, the beam 93 would only include sites A1-A4 as handoff candidates and would not include sites B1-B2, while the beam 87 would include sites B1 and B2 as candidates and not sites A1-A4. As the airplane executes its flight pattern, the candidate list for each beam will change so that when the beam 93 covers the terrestrial sites B1-B2, candidates B1-B2 would replace candidates A1-A4.
The beam handoff candidate maintenance technique of the present invention periodically determines a handoff candidate list for each beam based on a dynamically updated handoff list database maintained in the OMC 26. The database contains stored terrestrial cell site locations used, along with airplane position and airplane heading data input to the OMC 26 through the airplane telemetry link 34, to calculate the cell site candidate handoff list. The OMC 26 can generate a handoff candidate list including only a predetermined number of highest probability/priority candidates and can update/modify the list as a function of time. For example, in an airborne cellular system in which TIA/EIA 136 protocol is utilized, only the top 24 handoff candidates based on handoff priority would be included in a handoff list for each beam.
For example, referring still to
Referring now to
As shown in
The handoff candidate list database which is preferably maintained in the OMC 26 is therefore dynamically updated by the above-described preferred embodiment in accordance with the present invention based on airplane location, the distinction between time sensitive and time insensitive handoff candidates, and the prioritization of time insensitive hand-off candidates based on subscriber density. Alternative embodiments could prioritize time insensitive candidates based on factors other than subscriber density in accordance with system-specific parameters. Also, a relative ranking of all handoff candidates can be established based on the relative densities associated with each of the handoff candidate cells and based on the relative need for a user to be handed off from one beam to another in the system 10 to further prioritize the high and low priority handoff candidates.
If an excessive number of candidates exist after the high priority list is generated, the technique of the present invention can further reduce the number of candidates by periodically cycling through those handoff cell candidates within the footprint of the beam that are not time-sensitive. In other words, ground-based cell sites, which are not time-sensitive, may be divided into multiple groups within the beam to provide the technique in accordance with the present invention with a higher-ranking resolution. The handoff list maintenance technique may then cycle through only these groups of non-time sensitive cells more regularly to provide a more precise update of the handoff list without affecting hand offs of time-sensitive cells, such as the cell C1 in FIG. 3. Even though an associated handoff delay of, for example, 15 seconds or so would be associated with cycling through the multiple groups of non-time-sensitive cells, such a delay is acceptable.
If at 112 an excessive number of candidates is determined not to exist, the hand-off candidate list is updated at 118 to produce the handoff candidate list at 120 without determining and cycling through time insensitive candidates at 114 and 116, respectively. Also, as indicated by the dashed line at 122, the ranking operation at 110 and the excessive candidate determination at 112 may be skipped, and the technique may proceed directly from performing a handoff candidate probability calculation at 106 to performing periodic cycling through time insensitive candidates at 116.
In addition to facilitating handoffs from an airborne cellular system to terrestrial system cell sites, it is also contemplated that the candidate handoff list maintenance technique of the present invention may be designed to facilitate handoffs in a manner opposite to that described above, or, in other words, to enable handoffs from a terrestrial system to an adjacent airborne communications system. In such a case, terrestrial cells bordering on or overlapping the airborne system coverage area would also require a time-varying handoff candidate list as well. The list would function in a manner similar to the list described above, except that the communications beams, rather than the terrestrial cells, would be the handoff candidates. As there would be usually only one or two beams over a terrestrial cell at one time, however, a cyclical approach would not be required.
As should now be appreciated from the foregoing discussion, the candidate beam hand-off list maintenance technique of the present invention facilitates terrestrial system interoperability with an airborne cellular system by enabling reliable handoffs to be made between wide area coverage airborne cellular systems and terrestrial systems for overlay applications. The present invention also facilitates reliable handoffs between adjacent airborne cellular systems, and is capable of distinguishing between time-sensitive and non-time sensitive handoff candidates based on such factors as terrestrial cell user densities.
While the above description is of the preferred embodiment of the present invention, it should be appreciated that the invention may be modified, altered, or varied without deviating from the scope and fair meaning of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2598064 | Lindenblad | May 1952 | A |
2626348 | Nobles | Jan 1953 | A |
2627021 | Hansell et al. | Jan 1953 | A |
2748266 | Boyd | May 1956 | A |
3866227 | Ruvin | Feb 1975 | A |
4670899 | Brody et al. | Jun 1987 | A |
5063387 | Mower | Nov 1991 | A |
5067172 | Schloemer | Nov 1991 | A |
5123112 | Choate | Jun 1992 | A |
5187805 | Bertiger et al. | Feb 1993 | A |
5455964 | Roos et al. | Oct 1995 | A |
5479482 | Grimes | Dec 1995 | A |
5509051 | Barnett et al. | Apr 1996 | A |
5530909 | Simon et al. | Jun 1996 | A |
5548292 | Hirshfield et al. | Aug 1996 | A |
5557656 | Ray et al. | Sep 1996 | A |
5559865 | Gilhousen | Sep 1996 | A |
5574968 | Olds et al. | Nov 1996 | A |
5619211 | Horkin et al. | Apr 1997 | A |
5625867 | Rouffet et al. | Apr 1997 | A |
5657032 | Liechty et al. | Aug 1997 | A |
5678184 | Cutler, Jr. et al. | Oct 1997 | A |
5774790 | Dupuy | Jun 1998 | A |
5790939 | Malcolm et al. | Aug 1998 | A |
5832380 | Ray et al. | Nov 1998 | A |
5890079 | Levine | Mar 1999 | A |
5937349 | Andresen | Aug 1999 | A |
5974349 | Levine | Oct 1999 | A |
6006084 | Miller et al. | Dec 1999 | A |
6018659 | Ayyagari et al. | Jan 2000 | A |
6041235 | Aalto | Mar 2000 | A |
6061561 | Alanara et al. | May 2000 | A |
6061562 | Martin et al. | May 2000 | A |
6072428 | Schipper et al. | Jun 2000 | A |
6073004 | Balachandran | Jun 2000 | A |
6104926 | Hogg et al. | Aug 2000 | A |
6127946 | Tzidon et al. | Oct 2000 | A |
6275187 | Ross et al. | Aug 2001 | B1 |
6285878 | Lai | Sep 2001 | B1 |
6324398 | Lanzerotti et al. | Nov 2001 | B1 |
Number | Date | Country |
---|---|---|
0 421 704 | Oct 1990 | EP |
0 618 704 | Nov 1994 | EP |
0803742 | Apr 1997 | EP |
0 789 498 | Aug 1997 | EP |
0 803 742 | Oct 1997 | EP |
0 837 567 | Oct 1997 | EP |
0837567 | Oct 1997 | EP |
0 939 569 | Feb 1998 | EP |
0 901 240 | Mar 1999 | EP |
2757331 | Dec 1997 | FR |
2 320 992 | Nov 1997 | GB |
2318948 | May 1998 | GB |
3104426 | May 1991 | JP |
WO 95 04407 | Feb 1995 | WO |
WO 96 02094 | Jan 1996 | WO |
WO9602094 | Jan 1996 | WO |
WO 96 16489 | May 1996 | WO |
WO 97 07609 | Feb 1997 | WO |
WO 97 19525 | May 1997 | WO |
WO 97 23104 | Jun 1997 | WO |
WO 98 51568 | May 1998 | WO |
WO 98 44639 | Oct 1998 | WO |
WO 99 13598 | Mar 1999 | WO |
WO 99 23769 | May 1999 | WO |
WO 99 45609 | Sep 1999 | WO |
WO 99 46877 | Sep 1999 | WO |
WO 00 14902 | Mar 2000 | WO |
WO 01 20719 | Mar 2001 | WO |
WO 01 20814 | Mar 2001 | WO |
WO 01 20815 | Mar 2001 | WO |
WO 01 20943 | Mar 2001 | WO |