Method for maintaining the operating condition of a vacuum responsive device during loss and resumption of power

Information

  • Patent Grant
  • 6397876
  • Patent Number
    6,397,876
  • Date Filed
    Tuesday, February 6, 2001
    23 years ago
  • Date Issued
    Tuesday, June 4, 2002
    22 years ago
Abstract
A method for generating and controlling the source of vacuum produced from a source of pressurized air in communication with at least one vacuum responsive device wherein the present invention maintains the operating conditions of the system during the loss and resumption of power. The present invention provides at least one venturi for creating a vacuum through a flow of pressurized air. The present invention selectively provides a flow of pressurized air from a pressurized air source to the vacuum creating means and selectively provides a flow of pressurized air to the vacuum responsive device. A last function valve communicates with the selective providing of pressurized air to maintain the operating condition of the vacuum responsive device during the loss and resumption of power.
Description




FIELD OF THE INVENTION




The present invention relates to a method for generating and controlling the source of vacuum from a source of pressurized air to a vacuum responsive device, and more particularly, a method for maintaining the operating condition of a vacuum responsive device during the loss and resumption of power.




BACKGROUND OF THE INVENTION




Vacuum operated work holding devices are commonly employed as workpiece gripping elements to engage and transport workpieces in a manufacturing operation, to load and unload sheet metal parts into and from a die, or to carry a part, such as an automobile windshield, to the vehicle in which it is to be installed. Such vacuum operated work holding devices employ a control apparatus which uses a venturi passageway and a body which is connected to a source of pressurized air. Airflow through the venturi passageway induces a sub-atmospheric pressure in the throat of the venturi and in a passage connecting the venturi throat to the interior of a vacuum operated work holding device, such as a vacuum cup. This sub-atmospheric pressure induces vacuum within the cup when the cup engages a workpiece surface.




Further advancements of the vacuum control apparatus have led to designs which generate and control a source of vacuum produced from a source of pressurized air that is positioned remote from the vacuum operated work holding device, thereby allowing for a single remote control system to control a plurality of vacuum operated work holding devices. These designs provide the distinct advantage of allowing a plurality of vacuum operated work holding devices to be attached to a single controller. This provides further flexibility as the vacuum flow rate available to the vacuum operated work holding devices can be increased by increasing the number of venturis engaged in the sub-atmospheric pressure generating system.




Due to the fact that these vacuum operated work holding devices are commonly utilized in an industrial environment, the power supplied to these devices is often interrupted. For example, such devices are often provided with emergency stops wherein an operator of the device may actuate the emergency stop to cut the power to the device. When this occurs, it is desirous to have the vacuum operated work holding device, such as a vacuum cup, maintain its vacuum so that any workpiece that is being held by the vacuum cup will be maintained and held by the vacuum cup. On the other hand, if the vacuum cups are not engaging a workpiece when the power is disengaged, then it is desirous to have the air supply disengage so that pressurized air is conserved.




Possible solutions to these problems include electrically wiring the vacuum operated work holding device prior to the emergency stop so that power will be maintained to the vacuum control apparatus even after power has been disengaged to the remainder of the system. This solution is typically not desirable since most operators do not wish for any power to be linked to the system in an emergency stop condition.




Another possible solution is to add a power failure override circuit to the vacuum operated work holding device so that the vacuum generating device runs at a maximum vacuum condition when the power is disengaged. The disadvantage with this system is that the vacuum will continue to run regardless of whether the vacuum cups are currently engaging a workpiece. This of course, fails to conserve pressurized air and fails to reduce the level of unnecessary noise caused by the continuous blowing of pressurized air.




It is desirable to provide a method that will maintain the operating condition of a vacuum responsive device during the loss and resumption of power.




SUMMARY OF THE INVENTION




The present invention overcomes the above-noted disadvantages by providing an improved method for generating and controlling the source of vacuum produced from a source of pressurized air in communication with at least one vacuum responsive device wherein the method maintains the operating conditions of the system during the loss and resumption of power. The method includes selectively providing a flow of pressurized air from the pressurized air source to a vacuum creating device. Vacuum is created by passing pressurized air through the vacuum creating device and communicating the vacuum to the vacuum responsive device. Vacuum is negated by selectively providing a flow of pressurized air from the pressurized air source to the vacuum responsive device. The method also includes maintaining the operating condition of the vacuum responsive device by selectively providing pressurized air to the vacuum creating device during the loss and resumption of power.




Vacuum is created by directing a flow of pressurized air through at least one venturi. More venturis may be added to increase the amount of vacuum applied to a vacuum responsive device or to increase the number of vacuum responsive devices utilized.




Pressurized air is selectively provided to the vacuum creating device by actuating a vacuum solenoid operated valve between an open position, wherein pressurized air flows through the vacuum solenoid operated valve from the pressurized air source, and a closed position, wherein pressurized air from the pressurized air source is blocked from flowing through the vacuum solenoid operated valve. An external power solenoid operated valve is actuated in a first position, wherein pressurized air from the vacuum solenoid operated valve flows through the external power solenoid operated valve, and deactuated in a second position, wherein pressurized air from the vacuum solenoid operated valve is blocked from passing through the external power solenoid operated valve. A vacuum pilot poppet valve is moveable between an open position, wherein pressurized air from the pressurized air source flows through the vacuum pilot poppet valve, and a closed position, wherein pressurized air is blocked from flowing through the vacuum pilot poppet valve. A vacuum poppet valve communicates with the vacuum pilot poppet valve and is communicatable with the pressurized air source. The vacuum poppet valve is movable between an open position, wherein pressurized air from the pressurized air source flows through the vacuum poppet valve to the vacuum responsive device, and a closed position, wherein pressurized air is blocked from flowing through the vacuum poppet valve.




Pressurized air is selectively provided to the vacuum responsive device by actuating a blow-off solenoid operated valve between an open position, wherein pressurized air flows through the blow-off solenoid operated valve from the pressurized air source, and a closed position, wherein pressurized air is blocked from passing through the blow-off solenoid operated valve. A blow-off poppet valve is movable between an open position, wherein pressurized air from the pressurized air source flows through the blow-off poppet valve to the vacuum responsive device, and a closed position, wherein pressurized air is blocked from flowing through the blow-off poppet valve.




Maintaining the operating condition of the vacuum responsive device includes moving a last function valve between an open position, wherein pressurized air from the vacuum solenoid operated valve moves the last function valve to an open position so that pressurized air from the pressurized air source may flow to the external power solenoid operated valve, and a closed position, wherein pressurized air from the blow-off solenoid operated valve moves the last function valve to a closed position so that pressurized air from the pressurized air source cannot flow through the last function valve. When power is lost to the solenoid operated valves and the vacuum responsive device is in the vacuum mode, the external power solenoid operated valve is deactuated to the second position, wherein pressurized air from the last function valve flows through the external power solenoid operated valve and is ultimately routed to the venturis to maintain vacuum during the loss and resumption of power. If power is lost to the solenoids during a blow-off condition, the last function valve remains in the closed position thereby preventing pressurized air from flowing to the vacuum generating means during the loss and resumption of power.




Sensing the level of vacuum being supplied to the vacuum responsive device is also provided. The level of vacuum is determined and sent to a controller after the loss and resumption of power. If the vacuum level is above a predetermined level, then the controller actuates the first valving means into a power-on vacuum mode. If the vacuum level is below the predetermined level, then the controller remains idle.











BRIEF DESCRIPTION OG THE DRAWINGS




The present invention will be more fully understood by reference to the following detailed description of the preferred embodiments of the present invention when read in conjunction with the accompanying drawings, in which like reference numerals refer to like parts throughout the various views.





FIG. 1

is a prior art schematic diagram for operating a vacuum responsive devices.





FIG. 2

is a schematic diagram of the present invention shown in the power-on vacuum mode.





FIG. 3

is a schematic diagram of the present invention shown in the power-off vacuum mode.





FIG. 4

is a schematic diagram of the present invention shown in the power-on blow-off mode.





FIG. 5

is a schematic diagram of the present invention shown in the power-off blow-off mode.





FIG. 6

is a flow diagram showing the control logic of the controller of the present invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1

shows a prior art schematic diagram of the method


11


. The prior art schematic diagram in

FIG. 1

is shown in a power-off position and is utilized with conventional manifolds, valving, and vacuum cup hardware. As seen in

FIG. 1

, a pressurized air source


12


provides a supply line of pressurized air throughout the prior art vacuum control apparatus


11


. The pressurized air supply


12


is in communication with a vacuum valve train


14


and a blow-off valve train


16


. The vacuum valve train


14


selectively provides a pressurized air to a plurality of venturis


26


to create a vacuum. The vacuun is supplied to a vacuum responsive device


32


for engaging a workpiece (not shown). The blow-off valve train


16


selectively provides pressurized air to the vacuum responsive device


32


to release the workpiece from the vacuum responsive device


32


. (It should be noted that the drafter has referred throughout this document to a valve as being “open” when pressurized air can flow through the valve, and as being “closed” when pressurized air is blocked from flowing through the valve. This may be inconsistent with the nomenclature utilized in the pneumatics art.)




To provide pressurized air to the venturis


26


, the vacuum valve train


14


includes a vacuum solenoid operated valve


18


that is electrically actuatable between an open position and a closed position. When the vacuum solenoid operated valve


18


is actuated in the open position, a flow of pressurized air from the pressurized air supply


12


is allowed to flow through the vacuum solenoid operated valve


18


. When the vacuum solenoid operated valve


18


is deactuated (as shown in FIG.


1


), the vacuum solenoid operated valve


18


is closed, and pressurized air is blocked from passing through the vacuum solenoid operated valve


18


. (It should be noted that the drafter has referred throughout this document to a valve as being “open” when pressurized air can flow through the valve, and as being “closed” when pressurized air is blocked from flowing through the valve. This may be inconsistent with the nomenclature utilized in the pneumatics art.)




When the vacuum solenoid operated valve


18


is in the open position, the flow of pressurized air from the pressurized air source


12


is directed to a vacuum pilot poppet valve


20


. The vacuum pilot poppet valve


20


is an air-actuated valve that may be moved between an open and closed position. When the vacuum pilot poppet valve


20


receives a flow of pressurized air from the vacuum solenoid operated valve


18


, the vacuum pilot poppet valve


20


moves to the open position, and pressurized air from the pressurized air source


12


flows through the vacuum pilot poppet valve


20


. The vacuum pilot poppet valve


20


is also in communication with the pressurized air source


12


such that if the vacuum pilot poppet valve


20


does not receive a flow of pressurized air from the vacuum solenoid operated valve


18


, then pressurized air from the pressurized air source


12


moves the vacuum pilot poppet valve


20


to the closed position (as shown in FIG.


1


), and pressurized air from the pressurized air source


12


is blocked from passing through the vacuum pilot poppet valve


20


.




To further direct pressurized air to the vacuum responsive device


32


, the vacuum pilot poppet valve


20


communicates with a vacuum poppet valve


24


. The vacuum poppet valve


24


is an air actuated valve that is movable between an open position and a closed position. The vacuum poppet valve


24


is moved to the open position by a flow of pressurized air received from the vacuum pilot poppet valve


20


. When the vacuum poppet valve


24


is in the open position, pressurized air from the pressurized air source


12


is allowed to flow to the venturis


26


. When a flow of pressurized air is not provided to the vacuum poppet valve


24


from the vacuum pilot poppet valve


20


, then a flow of pressurized air from the pressurized air source


12


moves the vacuum poppet valve


24


to a closed position, (as shown in

FIG. 1

) and pressurized air from the pressurized air source


12


is blocked from flowing through the vacuum poppet valve


24


to the venturis


26


.




The venturis


26


are conventional in that they generate vacuum through a flow of pressurized air passing over a small inlet or orifice. Once the pressurized air passes through the venturis


26


, the pressurized air exhausts to an exhaust port


25


provided downstream of the venturis


26


. Check valves


28


are connected in series with the vacuum port


30


of each venturi


26


to isolate each venturi


26


from the other venturis in the stack. When vacuum is created through the use of pressurized air flowing through the venturis


26


, a check ball or flapper


27


in the check valve


28


lifts to open the check valve


28


thus allowing vacuum to flow to the vacuum port


30


. When the flow of pressurized air ceases, the ball or flapper


27


in the check valve


28


seats on a valve seat


29


to close the check valve


28


and prevent atmospheric pressure from entering the vacuum supply line through the venturis


26


. The supply line leading from the venturis


26


provides vacuum to a vacuum port


30


which is in communication with the vacuum responsive device


32


.




To release a workpiece from the vacuum responsive device


32


, the vacuum control apparatus


11


provides the blow-off valve train


16


. The blow-off valve train


16


includes a blow-off solenoid operated valve


34


which is electrically actuatable between an open position and a closed position. The blow-off solenoid operated valve


34


communicates with the pressurized air source


12


so that when the blow-off solenoid operated valve


34


is actuated into the open position, pressurized air from the pressurized air source


12


flows through the blow-off solenoid operated valve


34


. When the blow-off solenoid operated valve


34


is deactuated, the blow-off solenoid operated valve


34


moves to a closed position to block the flow of pressurized air through the blow-off solenoid actuated valve


34


.




When the blow-off solenoid actuated valve


34


is actuated in the open position and pressurized air is allowed to flow through the blow-off solenoid operated valve


34


, the pressurized air is directed to a blow-off poppet valve


36


. The blow-off poppet valve


36


is an air actuated valve that is movable between an open position and a closed position. When the blow-off poppet valve


36


receives a flow of pressurized air from the blow-off solenoid operated valve


34


, the blow-off poppet valve


36


moves to the open position, and pressurized air from the pressurized air source


12


flows through the blow-off poppet valve


36


to the vacuum port


30


. When there is no flow of pressurized air to the blow-off poppet valve


36


from the blow-off solenoid operated valve


34


, a flow of pressurized air from the pressurized air source


12


moves the blow-off poppet valve


36


to the closed position, and pressurized air is prevented from passing through the blow-off poppet valve


36


to the vacuum port


30


. The prior art vacuum control apparatus


11


also provides a vacuum sensor


38


in communication with the vacuum port


30


to provide an indication as to the level of vacuum being supplied to the vacuum port


30


.





FIGS. 2-6

show the schematic diagrams and the flow chart utilized in the method


10


of the present invention. The schematic diagrams are utilized with conventional manifolds, valving, and vacuum cup hardware. The controller functions are incorporated by reference in U.S. Pat. No. 5,201,560. The method


10


of the present invention is unique and novel over the prior art method


11


in that the method


10


maintains the operating condition of the vacuum responsive device


32


during the loss and resumption of power. In so doing, the present invention utilizes the pressurized air source


12


to provide supply lines


13


of pressurized air to the vacuum control apparatus


10


. A flow of pressurized air from said pressurized air source


12


is selectively provided to create and supply vacuum to the vacuum responsive device


32


. The vacuum responsive device


32


utilizes the vacuum to engage and hold a workpiece (not shown). A flow of pressurized air from the pressurized air source


12


is selectively provided to the vacuum responsive device


32


to release the workpiece from the vacuum responsive device


32


. The vacuum responsive device


32


may include vacuum cups or any other work holding device that may operate through the use of vacuum.




To selectively supply pressurized air to the venturis


26


create vacuum, a vacuum valve train


42


includes the vacuum solenoid operated valve


18


in communication with the pressurized air source


12


. The vacuum solenoid operated valve


18


is electrically actuated between an open position (as shown in FIG.


2


), wherein a flow of pressurized air from the pressurized air source


12


is allowed to flow through the vacuum solenoid operated valve


18


, and a closed position (as shown in FIGS.


3


-


5


), wherein pressurized air from the pressurized air source


12


is blocked from passing through the vacuum solenoid operated valve


18


. It should be noted that the loss of electrical power to the vacuum solenoid operated valve


18


will cause deactuation of the valve


18


into the closed position.




In order to ensure that the flow of pressurized air is maintained during the loss and resumption of electrical power (as will be described in detail later), an external power solenoid operated valve


48


is placed in communication with the vacuum solenoid operated valve


18


. The external power solenoid operated valve


48


is electrically actuated and maintained in a first position (as shown in

FIGS. 2 and 4

) as long as electrical power is being supplied to the external power solenoid operated valve


48


. When the external power solenoid operated valve


48


is in the first position, pressurized air from the vacuum solenoid operated valve


18


is allowed to flow through the external power solenoid operated valve


48


(as shown in FIG.


2


). When power is lost to the external power solenoid operated valve


48


, the external power operated solenoid valve


48


moves to a second position thereby blocking the flow of pressurized air from the vacuum solenoid operated valve


18


(as shown in

FIGS. 3 and 5

.) However, when power is lost, pressurized air from the vacuum solenoid operated valve


18


no longer flows to the external power solenoid actuated valve


48


because the loss of power deactuates the vacuum solenoid operated valve


18


into its closed position.




When the external power solenoid operated valve


48


is actuated in the first position (as shown in FIGS.


2


and


4


), pressurized air flows through the external power solenoid operated valve


48


to the vacuum pilot poppet valve


20


. The vacuum pilot poppet valve


20


is an air actuated valve that moves between an open position and a closed position. Pressurized air from the external power solenoid operated valve


48


moves the vacuum pilot poppet valve


20


to an open position and allows for pressurized air from the pressurized air source


12


to flow through the vacuum pilot poppet valve


20


. The vacuum pilot poppet valve


20


is also in communication with the pressurized air source


12


so that when pressurized air is not provided from the external power solenoid operated valve


48


to the vacuum pilot poppet valve


20


, the vacuum pilot poppet valve


20


moves to a closed or second position (as shown in FIGS.


4


-


5


). When the vacuum pilot poppet valve


20


is in its second position, the vacuum pilot poppet valve


20


is vented to atmospheric pressure


49


.




The vacuum pilot poppet valve


20


is designed so that a plurality of vacuum modules


22


may be connected and controlled by a common vacuum pilot poppet valve


20


. As seen in

FIGS. 2-5

, the vacuum pilot poppet valve


20


communicates with the vacuum module


22


which includes the vacuum poppet valve


24


. The vacuum poppet valve


24


is an air actuated valve that selectively moves between an open position and a closed position to allow the flow of pressusrized air to the vacuum creating means


44


. When the vacuum poppet valve


24


receives a flow of pressurized air from the vacuum pilot poppet valve


20


, the vacuum poppet valve


24


moves to an open position to allow pressurized air from the pressurized air source


12


to flow through to the vacuum creating means


44


(as shown in FIGS.


2


-


3


). When pressurized air is not supplied from the vacuum pilot poppet valve


20


to the vacuum poppet valve


24


, pressurized air from the pressurized air source


12


communicates with the vacuum poppet valve


24


to move the vacuum poppet valve


24


to the closed position and block the flow of pressurized air to the vacuum creating means


44


(as shown in FIGS.


4


-


5


).




Creating vacuum is similar to that discussed in the prior art in that it utilizes at least one venturi


26


to generate vacuum through the flow of pressurized air. Preferably, four venturis


26


are utilized, as shown in

FIGS. 2-5

. Check valves


28


, having the check balls or flappers


27


and valve seats


29


, are utilized to prevent the flow of atmospheric pressure into the vacuum supply line when the flow of pressurized air ceases to flow through the venturis


26


. The vacuum that is created from the venturis


26


flows through a supply line to the vacuum port


30


, and the pressurized air that flows through the venturis


26


is exhausted to the exhaust port


25


.




In order to release the workpiece from the vacuum responsive device


32


, the present invention provides the blow-off valve train


16


which selectively provides a flow of pressurized air to the vacuum responsive device


32


so that the vacuum between the vacuum responsive device


32


and the workpiece is lost, thereby releasing the workpiece from the vacuum responsive device


32


. To selectively control the flow of pressurized air to the vacuum responsive device


32


, the blow-off valve train


16


includes the blow-off solenoid operated valve


34


which is electrically actuatable between an open position and a closed position. The blow-off solenoid operated valve


34


communicates with the pressurized air source


12


such that when the blow-off solenoid operated valve


34


is electrically actuated into the open position (as shown in FIG.


4


), pressurized air from the pressurized air source


12


flows through the blow-off solenoid operated valve


34


. When the blow-off solenoid operated valve


34


is deactuated into the closed position (as shown in

FIGS. 2

,


3


, and


5


), pressurized air from the pressurized air source


12


is blocked from passing through the blow-off solenoid operated valve


34


. Loss of electrical power to the blow-off solenoid operated valve


34


will cause the valve


34


to deactuate into the closed position.




When the blow-off solenoid operated valve


34


has been actuated to the open position, pressurized air flows through the blow-off solenoid operated valve


34


to the blow-off poppet valve


36


. The blow-off poppet valve


36


is an air actuated valve that selectively directs pressurized air to the vacuum responsive device


32


by moving between an open position and a closed position. When the blow-off poppet valve


36


receives a flow of pressurized air from the blow-off solenoid operated valve


34


, the flow of pressurized air moves the blow-off poppet valve


36


to an open position, wherein pressurized air from the pressurized air source


12


flows through the blow-off poppet valve


36


to the vacuum responsive device


32


(as shown in FIG.


4


). When the blow-off poppet valve


36


does not receive a flow of pressurized air from the blow-off solenoid operated valve


34


, pressurized air from the pressurized air source


12


moves the blow-off poppet valve


36


to a closed position to block the flow of pressurized air to the vacuum port


30


(as shown in

FIGS. 2-3

and


5


).




In order to maintain the operating condition of the vacuum responsive device


32


during the loss and resumption of power to the solenoid operated valves


18


,


34


,


48


, the present invention maintains the operating condition of the vacuum responsive device


32


by selectively providing vacuum to the vacuum responsive device. To maintain the operating condition of the vacuum responsive device, a last function valve


50


communicates with the vacuum valve train


42


, the blow-off valve train


16


, and the pressurized air source


12


. The last function valve


50


is an air actuated valve that selectively controls the flow of pressurized air to the vacuum creating means


44


by moving between an open position and a closed position. The last function valve


50


communicates with the vacuum solenoid operated valve


18


such that when the last function valve


50


receives the flow of pressurized air from the vacuum solenoid operated valve


18


, the last function valve


50


moves to the open position to allow for pressurized air from the pressurized air source


12


to flow to the external power solenoid operated valve


48


(as shown in FIGS.


2


-


3


). The last function valve


50


is also in communication with the blow-off solenoid operated valve


34


such that when the blow-off solenoid operated valve


34


is actuated in the open position to communicate pressurized air to the last function valve


50


, the last function valve


50


moves to the closed position, wherein the flow of pressurized air is blocked from passing through the last function valve


50


(as shown in FIGS.


4


-


5


). It should be noted that the vacuum solenoid operated valve


18


and the blow-off solenoid operated valve


34


are held in communication such that only one of these solenoid operated valves


18


,


34


may be actuated in the open position at the same time.




To maintain the original operating condition after the loss and resumption of power, the present invention senses the level of vacuum through the use of a vacuum sensor


38


. The vacuum sensor


38


communicates with the vacuum responsive device


32


, and a controller


55


communicates with the vacuum sensor


38


. As seen in block


58


of

FIG. 6

, the vacuum sensor


38


indicates the level of vacuum being provided to the vacuum responsive device


32


. After the resumption of power to the controller


55


and the vacuum sensor


38


, the vacuum sensor


38


sends a signal to the controller


55


indicating the level of vacuum at the vacuum port


30


. The controller


55


provides software which interprets whether the level of vacuum at the vacuum port


30


is above or below a level of vacuum which is maintained when engaging and holding a workpiece by the vacuum responsive device


32


, as shown in decision block


60


of FIG.


6


. If the level of vacuum is above this predetermined level, then the controller


55


actuates the vacuum solenoid operated valve


18


into the open position so that the original pneumatic circuitry, established prior to the loss of power, is reestablished, as shown in block


62


of FIG.


6


. If the vacuum level is below the predetermined level, then the controller


55


interprets the signal as meaning that no part is engaged by the vacuum responsive device


32


, and therefore, the controller


55


remains idle until an input signal is provided, as shown in block


64


of FIG.


6


.




In operation, the present invention may start in a vacuum mode with electric power on, as shown in FIG.


2


. The vacuum solenoid operated valve


18


is electrically actuated to an open position wherein pressurized air from the pressurized air source


12


passes through the vacuum solenoid operated valve


18


. Pressurized air is then directed to and through the open actuated external power solenoid operated valve


48


to the open vacuum pilot poppet valve


20


. Pressurized air from the pressurized air source


12


flows through the vacuum pilot poppet valve


20


to the open vacuum poppet valve


24


, wherein pressurized air flows across the venturis


26


to produce vacuum to the vacuum port


30


. A flow of pressurized air also flows from the vacuum solenoid operated valve


18


to the last function valve


50


. The last function valve


50


opens and allows pressurized air to flow to a closed port of the external power solenoid operated valve


48


. It should be noted that when the vacuum solenoid operated valve


18


is actuated, the blow-off solenoid operated valve


34


is deactuated in the closed position.




When electrical power is lost to the solenoid operated valves


18


,


34


,


48


while in the vacuum mode, the vacuum control apparatus


10


reflects the pneumatic circuitry shown in FIG.


3


. Pressurized air from the pressurized air source


12


is blocked by the vacuum solenoid operated valve


18


as the loss of power causes the vacuum solenoid operated valve


18


to deactuate into the closed position. The external power solenoid operated valve


48


is also deactuated into its second position. The second position of the external power solenoid operated valve


48


allows for the flow of pressurized air from the last function valve


50


to flow through the external power solenoid operated valve


48


to the vacuum pilot poppet valve


20


. The flow of pressurized air maintains the vacuum pilot poppet valve


20


in the open position so that pressurized air from the pressurized air source


12


continues to flow to the vacuum poppet valve


24


. The vacuum poppet valve


24


is maintained in the open position, and pressurized air from the pressurized air source


12


continues to flow to the venturis


26


so as to generate vacuum to the vacuum responsive device


32


.





FIG. 4

shows the present invention in a blow-off mode with the electric power on. The blow-off solenoid operated valve


34


is actuated in its open position wherein pressurized air from the pressurized air source


12


flows through the blow-off solenoid operated valve


34


. The pressurized air flows to the blow-off poppet valve


36


wherein the blow-off poppet valve


36


moves to its open position. Pressurized air from the pressurized air source


12


flows through the blow-off poppet valve


36


to the vacuum responsive device


32


. In addition, pressurized air from the blow-off solenoid operated valve


34


flows to the last function valve


50


and moves the last function valve


50


to the closed position. This prevents the flow of pressurized air through the last function valve


50


to the external power solenoid operated valve


48


. It should also be noted that when the blow-off solenoid operated valve


34


is actuated, the vacuum solenoid operated valve


18


must be deactuated in the blow-off mode thereby preventing the flow of pressurized air through the vacuum solenoid operated valve


18


.





FIG. 5

shows the present invention in a blow-off mode with the electric power off. The blow-off solenoid operated valve


34


is deactuated into the closed position thereby blocking the flow of pressurized air through the blow-off solenoid operated valve


34


. Since there is no flow of pressurized air from the blow-off solenoid operated valve


34


to the blow-off poppet valve


36


, the flow of pressurized air from the pressurized air source


12


moves the blow-off poppet valve


36


to the closed position, thus preventing the flow of pressurized air to the vacuum responsive device


32


. Since there is no flow of pressurized air from either the blow-off solenoid operated valve


34


or the vacuum solenoid operated valve


18


to the last function valve


50


, the last function valve


50


remains in the closed position and prevents the flow of pressurized air to the external power solenoid operated valve


48


.




Although pressurized air is provided to the vacuum responsive device


32


in the blow-off mode prior to the loss of power, there is no need for the pressurized air to resume flowing to the vacuum responsive device


32


when the power is restored since the workpiece would have already been released from the vacuum responsive device


32


upon being actuated in the blow-off mode. This conserves pressurized air from needlessly flowing through the vacuum responsive device


32


when the workpiece has already been released from the vacuum responsive device


32


.




After the loss and resumption of power to the present invention, the vacuum sensor


38


senses the level of vacuum being supplied to the vacuum responsive device


32


. The vacuum sensor


38


sends a signal to the controller


55


indicating the level of vacuum being supplied to the vacuum responsive device


32


. If the level of vacuum is above the predetermined level, which indicates that a workpiece is being held by the vacuum responsive device


32


, then the vacuum mode is on, and the controller


55


actuates the vacuum solenoid operated valve


18


to the open position to reflect the diagram shown in FIG.


2


. If the level of vacuum is below the predetermined level, then the workpiece is not engaged by the vacuum responsive device


32


, and the present invention is in the blow-off mode. The controller


55


does not actuate the blow-off solenoid operated valve


34


because the workpiece has already been released from the vacuum responsive device


32


. At this point, the controller


55


remains idle, and the present invention stands ready for an input.




While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.



Claims
  • 1. A method for generating and controlling a source of vacuum produced from a source of pressurized air in communication with at least one vacuum responsive device, the method comprising:selectively providing a flow of pressurized air from said pressurized air source to a vacuum creating device; creating vacuum through a flow of pressurized air through said vacuum creating device and communicating said vacuum to said vacuum responsive device; selectively providing a flow of pressurized air from said pressurized air source to said vacuum responsive device; and maintaining the operating condition of said vacuum responsive device during the loss and resumption of power.
  • 2. The method as stated in claim 1, wherein said creating vacuum further comprises:directing said pressurized air through at least one venturi to generate sub-atmospheric pressure.
  • 3. The method as stated in claim 1, wherein said selectively providing pressurized air to said vacuum creating device further comprises:actuating a first solenoid operated valve between an open position, wherein pressurized air flows through said first solenoid operated valve from said pressurized air source, and a closed position, wherein pressurized air is blocked from flowing through said first solenoid operated valve; actuating a second solenoid operated valve between a first position, wherein pressurized air from said first solenoid operated valve flows through said second solenoid operated valve, and a second position, wherein pressurized air from said first solenoid operated valve is blocked from passing through said second solenoid operated valve; and moving a first air operated valve between an open position, wherein pressurized air from said second solenoid operated valve moves said first air operated valve to an open position to allow pressurized air from said pressurized air source to flow to said vacuum creating device, and a closed position, wherein pressurized air is blocked from passing through said first air operated valve to said vacuum creating means.
  • 4. The method as stated in claim 1, wherein said selectively providing pressurized air to said vacuum responsive device further comprises:actuating a solenoid operated valve between an open position, wherein pressurized air flows through said solenoid operated valve from said pressuirized air source, and a closed position, wherein pressurized air is blocked from passing through said solenoid operated valve; and moving an air operated valve between an open position, wherein pressurized air flows from said solenoid operated valve to move said air operated valve to said open position to allow pressurized air from said pressurized air source to flow to said vacuum responsive device, and a closed position, wherein pressurized air from said pressurized air source moves said air operated valve to a closed position to block pressurized air from passing through said air operated valve to said vacuum responsive device.
  • 5. The method as stated in claim 1, wherein said maintaining the operating condition of said vacuum responsive device further comprises:moving air operated valve between an open position, wherein pressurized air from said pressurized air source flows through said air operated valve to said vacuum creating device, and a closed position, wherein pressurized air from said pressurized air source is blocked from passing through said air operated valve; said selectively providing pressurized air to said vacuum creating device providing pressurized air to said air operated valve to move said air operated valve to said open position; and providing a flow of pressurized air from said pressurized air source to said air operated valve to move said air operated valve to said closed position when said selectively providing pressurized air to said vacuum creating device is not providing pressurized air to said air operated valve.
  • 6. The method as stated in claim 1, further comprising:sensing the level of vacuum to said vacuum responsive device.
  • 7. The method as stated in claim 6, further comprising:controlling said selective providing of pressurized air to said vacuum creating device wherein if the vacuum level after the loss and resumption of power is above a predetermined level, then pressurized air is selectively provided to said vacuum creating device.
  • 8. A method for generating and controlling a source of vacuum produced from a source of pressurized air in communication with at least one vacuum responsive device, the method comprising:selectively providing a flow of pressurized air from said pressurized air source to at least one venturi; generating sub-atmospheric pressure by passing a flow of pressurized air from said pressurized air source through said venturi and communicating said sub-atmospheric pressure to said vacuum responsive device; selectively providing a flow of pressurized air from said pressurized air source to said vacuum responsive device; and moving a last function valve in response to a flow of pressurized air to maintain the same operating condition of said vacuum responsive device during the loss and resumption of power.
  • 9. The method stated in claim 8, wherein said selectively providing pressurized air to said venturi further comprises:actuating a vacuum solenoid operated valve between an open position, wherein a flow of pressurized air passes through said vacuum solenoid operated valve from said pressurized air source, and a closed position, wherein said flow of pressurized air from said pressurized air source is prevented from passing through said vacuum solenoid operated valve; actuating an external power solenoid operated valve between a first position, wherein pressurized air from said vacuum solenoid operated valve is allowed to flow through said external power solenoid operated valve, and a second position, wherein pressurized air from said vacuum solenoid operated valve is not allowed to pass through said external power solenoid operated valve; and moving a vacuum pilot valve between a first position, wherein a flow of pressurized air from said external power solenoid operated valve moves said vacuum pilot valve to an open position and pressurized air from said pressurized air source flows through said vacuum pilot valve to said venturi, and a second position, wherein said pressurized air source moves said vacuum pilot valve to said second position and atmospheric pressure is vented through said vacuum pilot valve.
  • 10. The method as stated in claim 9, further comprising:moving a vacuum valve between an open position, wherein a flow of pressurized air from said vacuum pilot valve moves said vacuum valve to said open position and pressurized air from said pressurized air source flows through said vacuum valve to said venturi, and a closed position, wherein a flow of pressurized air from said pressurized air source moves said vacuum valve to a closed position and pressurized air from said pressurized air source is blocked from passing through said vacuum valve.
  • 11. The method as stated in claim 8, further comprising:sensing the level of vacuum applied to said vacuum responsive device.
  • 12. The method as stated in claim 11, further comprising:reading the level of vacuum determined by said sensing the level of vacuum after the loss and resumption of power, and if the level of vacuum is above a predetermined level, then pressurized air is continually provided to said venturi, and if the level of vacuum is below a predetermined level, then pressurized air is not provided to said venturi or to said vacuum responsive device.
  • 13. The method as stated in claim 8, wherein said selectively providing a flow of pressurized air to said vacuum responsive device comprises:actuating a blow-off solenoid operated valve between an open position, wherein pressurized air from said pressurized air source flows through said blow-off solenoid operated valve, and a closed position, wherein pressurized air is blocked from passing through said blow-off solenoid operated valve; and moving a blow-off valve between an open position, wherein a flow of pressurized air from said blow-off solenoid operated valve moves said blow-off valve to said open position and pressurized air from said pressurized air source flows through said blow-off valve to said vacuum responsive device, and a closed position, wherein a flow of pressurized air from said pressurized air source moves said blow-off valve to said closed position to block pressurized air from passing through said blow-off valve.
  • 14. The method as stated in claim 8, wherein said moving said last function valve further comprises:moving said last function valve between an open position, wherein a flow of pressurized air from said pressurized air source to said venturis moves said last function valve to said open position and allows pressurized air from said pressurized air source to flow through said last function valve to said venturi, and a closed position, wherein a flow of pressurized air from said pressurized air source to said vacuum responsive device moves said last function valve to said closed position to block pressurized air from passing through said last function valve.
  • 15. A method for generating and controlling a source of vacuum produced from a source of pressurized air in communication with at least one vacuum responsive device, the method comprising:generating sub-atmospheric pressure in response to a flow of pressurized air through at least one venturi and communicated to said vacuum responsive device; moving a vacuum pilot poppet valve between an open position, wherein pressurized air flows from said pressurized air source to said venturi, and a closed position, wherein said pressurized air is blocked from passing through said vacuum pilot poppet valve; actuating an external power solenoid operated valve to an open position, wherein pressurized air flows through said external power solenoid operated valve to move said vacuum pilot poppet valve to said open position; actuating a vacuum solenoid operated valve between an open position, wherein pressurized air from said pressurized air source flows through said vacuum solenoid operated valve to said external power solenoid operated valve, and a closed position, wherein pressurized air is blocked from passing through said vacuum solenoid operated valve; moving a blow-off poppet valve between an open position, wherein pressurized air from said pressurized air source flows to said vacuum responsive device, and a closed position, wherein pressurized air is blocked from flowing through said blow-off poppet valve to said vacuum responsive device; actuating a blow-off solenoid operated valve between a first position, wherein pressurized air from said pressurized air source moves said blow-off poppet valve to said open position, and a second position, wherein pressurized air is blocked from flowing through said blow-off solenoid operated valve; moving a last function valve between an open position, wherein pressurized air from said vacuum solenoid operated valve moves said last function valve to said open position to allow pressurized air to flow to said external power solenoid operated valve, and a closed position, wherein pressurized air from said blow-off solenoid operated valve moves said last function valve to said closed position to prohibit the flow of pressurized air to said vacuum responsive device during the loss and resumption of power to said solenoid operated valves; and actuating said external power solenoid operated valve between an actuated position, wherein said external power solenoid directs pressurized air from said vacuum solenoid operated valve to said vacuum pilot poppet valve, and a deactuated position, wherein said external power solenoid operated valve directs pressurized air from said last function valve to said vacuum pilot poppet valve to maintain pressurized air to said venturi thereby maintaining vacuum to said vacuum responsive device during the loss and resumption of power to said solenoid operated valves.
  • 16. The method stated in claim 15, further comprising:moving at least one vacuum poppet valve between an open position, wherein pressurized air from said vacuum pilot poppet valve moves said vacuum poppet valve to said open position to allow pressurized air from said pressurized air source to flow to said venturi, and a closed position, wherein pressurized air from said pressurized air source moves said vacuum poppet valve to said closed position to prevent pressurized air from flowing to said venturi.
  • 17. The method stated in claim 15, further comprising:sensing the level of vacuum being applied to said vacuum responsive device.
  • 18. The method stated in claim 17, further comprising:reading the level of vacuum determined by said vacuum sensor, and if after the loss and resumption of power, the level of vacuum is above a predetermined level, then said vacuum solenoid is actuated.
US Referenced Citations (3)
Number Name Date Kind
5188411 Golden Feb 1993 A
5201560 Golden Apr 1993 A
5277468 Blatt Jan 1994 A