Method for making a crystalline silicon solar cell substrate utilizing flat top laser beam

Information

  • Patent Grant
  • 9508886
  • Patent Number
    9,508,886
  • Date Filed
    Tuesday, October 11, 2011
    13 years ago
  • Date Issued
    Tuesday, November 29, 2016
    7 years ago
Abstract
A method for making a crystalline silicon solar cell substrate is provided. A doped dielectric layer is deposited over the backside surface of a crystalline silicon substrate, the doped dielectric layer having a polarity opposite the polarity of the crystalline silicon substrate. Portions of the backside surface of the crystalline substrate are exposed through the doped dielectric layer. An overlayer is deposited over the doped dielectric layer and the exposed portions of the backside surface of the crystalline silicon substrate. Pulsed laser ablation of the overlayer is performed with a flat top laser beam on the silicon substrate to form continuous base openings nested within the exposed portions of the backside surface of the crystalline silicon substrate, the flat top laser beam having a beam intensity profile flatter as compared to a Gaussian beam intensity profile and having a rectangular beam cross section. Doped base regions are formed in the crystalline silicon substrate through the continuous base openings.
Description
FIELD

This disclosure relates in general to the field of solar photovoltaics, and more particularly to laser processing techniques for the production of crystalline semiconductor, including crystalline silicon, and other types of photovoltaic solar cells.


BACKGROUND

Laser processing offers several advantages in terms of efficiency enhancement and manufacturing cost reduction for high-performance, high-efficiency solar cell processing. Firstly, advanced crystalline silicon solar cells may benefit from having the dimensions of the critical features such as electrical contacts be much smaller than the current industrial practice. For front contacted solar cells the contact area of the front metallization to the emitter as well as the contact area of the back metal to the base needs to be low (or the contact area ratios should be fairly small, preferably much below 10%). For an all back-contact, back-junction solar cell, where the emitter and base regions forming the p/n junction and the metallization are on the same side (the cell backside opposite the sunny side), the dimensions of the various features are typically small for high efficiency. In these cells where typically the emitter and base regions form alternate stripes, the width of these regions (in particular the width of the base contact) tends to be small. Also, the dimensions of the metal contacts to these regions tend to be proportionally small. The metallization connecting to the emitter and base regions then needs to be patterned to a correspondingly finer scale. Generally, lithography and laser processing are the technologies that have the relatively fine resolution capability to provide the small dimensions and the control required. Of these techniques, only laser processing offers the low cost advantage required in solar cell making. While lithography requires consumables such as photoresist and subsequent resist developer and stripper (which add to the process cost and complexity), laser processing is a non-contact, dry, direct write method and does not require any material consumables, making it a simpler and lower cost process for solar cell fabrication. Moreover, laser processing is an excellent choice for environmentally benign manufacturing since it is an all-dry process which does not use any consumables such as chemicals.


Further, to reduce the cost of solar cells there is a push to reduce the thickness of the crystalline silicon used and also at the same time increase the cell area for more power per cell and lower manufacturing cost per watt. Laser processing is suitable for these thin wafers and thin-film cell substrates as it is a completely non-contact, dry process and can be easily scaled to larger cell sizes.


Laser processing is also attractive as it is generally a “green” and environmentally benign process, not requiring or using poisonous chemicals or gases. With suitable selection of the laser and the processing system, laser processing presents the possibility of very high productivity with a very low cost of ownership.


Despite these advantages, the use of laser processing in crystalline silicon solar cell making has been limited because laser processes that provide high performance cells have not been developed. Disclosed here are laser processes using schemes that are tailored for each key application to produce solar cells with high efficiency. Specific embodiments are also disclosed for applications of laser processing in manufacturing thin-film crystalline silicon solar cells, such as those manufactured using sub-50-micron silicon substrates formed by epitaxial silicon growth.


SUMMARY

Laser processing schemes are disclosed that meet the requirements of base to emitter isolation (including but not limited to shallow trench isolation) for all back-contact homo-junction emitter solar cells (such as high-efficiency back-contact crystalline silicon solar cells), opening for base doping, and base and emitter contact opening (with controlled small contact area ratios, for instance substantially below 10% contact area ratio, for reduced contact recombination losses and increased cell efficiency), selective doping (such as for base and/or emitter contact doping), and metal ablation (formation of patterned metallization layers such as creating the patterned metallization seed layer on a thin-film monocrystalline silicon solar cell prior to subsequent attachment of a backplane to the cell and its release from a reusable host template) for both front-contact and all back-contact/back-junction homo-junction emitter solar cells. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and oxide (such as a transparent conductive oxide) ablation, and metal ablation for metal patterning for hetero-junction solar cells (such as back-contact solar cells comprising hetero-junction amorphous silicon emitter on monocrystalline silicon base). These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or using epitaxial deposition processes, that are either planar or textured/three-dimensional, where the three-dimensional substrates may be obtained using epitaxial silicon lift-off techniques using porous silicon seed/release layers or other types of sacrificial release layers. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films obtained using epitaxial silicon deposition on a template comprising a porous silicon release layer or other techniques known in the industry and can have any crystalline silicon absorber thickness in the range of from less than one micron to more than 100 microns (with the thin-film monocrystalline silicon solar cells preferably having a silicon thickness of less than 50 microns).


According to one aspect of the disclosed subject matter, a method for making a crystalline silicon solar cell substrate is provided. A doped dielectric layer is deposited over the backside surface of a crystalline silicon substrate, the doped dielectric layer having a polarity opposite the polarity of the crystalline silicon substrate. Portions of the backside surface of the crystalline substrate are exposed through the doped dielectric layer. An overlayer is deposited over the doped dielectric layer and the exposed portions of the backside surface of the crystalline silicon substrate. Pulsed laser ablation of the overlayer is performed with a flat top laser beam on the silicon substrate to form continuous base openings nested within the exposed portions of the backside surface of the crystalline silicon substrate, the flat top laser beam having a beam intensity profile flatter as compared to a Gaussian beam intensity profile and having a rectangular beam cross section. Doped base regions are formed in the crystalline silicon substrate through the continuous base openings.





BRIEF DESCRIPTION OF THE DRAWINGS

The features, nature, and advantages of the disclosed subject matter will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference numerals indicate like features and wherein:



FIG. 1 shows a scanning electron microscope (SEM) image of a shallow trench made in silicon for application in an all back contact solar cell, in accordance with the present disclosure;



FIG. 2 shows a profile of a shallow trench in silicon for application in all back contact solar cells;



FIGS. 3A-3D show the procedure for selecting the laser fluence to obtain reduced damage silicon dioxide (or oxide) ablation. FIG. 3A shows the dependence of the size of the ablation spot on the laser fluence; FIG. 3B shows irregular delamination of oxide; FIG. 3C shows a damage-free spot; and FIG. 3D shows highly damaged silicon in the spot opening;



FIG. 4 shows substantially parallel rows of contacts opened in oxide using pulsed laser ablation in accordance with the present disclosure;



FIG. 5 shows a screenshot with oxide ablation spots for metal contacts;



FIGS. 6A and 6B show the laser-ablated area formed by making ablation spots that are overlapped in both the x and y-direction; FIG. 6A shows a 18 micron wide strip opened in 1000 A BSG (boron-doped oxide)/500 A USG (undoped oxide) for base isolation region; and FIG. 6B shows a 90 micron wide stripe opened in 1000 A USG (undoped oxide) for base region;



FIG. 7A shows the threshold for oxide damage, below which metal can be removed without metal penetration of the oxide layer;



FIG. 7B shows that after 20 scans the metal runners are fully isolated;



FIG. 7C shows an optical micrograph of the trench formed in this metal stack;



FIGS. 8A and 8B show a top view and a cross-sectional view of a pyramidal TFSC;



FIGS. 9A and 9B show a top view and a cross-sectional view of a prism TFSC;



FIGS. 10A and 10B show a process flow for creation and release of a planar epitaxial thin film silicon solar cell substrate (TFSS);



FIGS. 11A and 11B show a process flow for planar epitaxial thin film silicon solar cell substrate in case the TFSS is too thin to be free standing or self-supporting;



FIGS. 12A and 12B show a process flow for micromold template (or reusable template) creation for making a 3-D TFSS;



FIGS. 12C and 12D show a process flow for 3-D TFSS creation using the reusable micromold template;



FIG. 13 shows a process flow for making a planar front contacted solar cell where the TFSS is thick enough to be free standing and self-supporting (e.g. thicker than approximately 50 microns for smaller 100 mm×100 mm substrates and thicker than approximately 80 microns for 156 mm×156 mm substrates), in accordance with the present disclosure;



FIG. 14 shows a process flow for making a planar front contact solar cell where the TFSS is too thin to be self supporting, in accordance with the present disclosure;



FIG. 15 shows a process flow for making a 3-D front contact solar cell in accordance with the present disclosure;



FIGS. 16A-16D show a process flow for making an interdigitated back contact back-junction solar cell where the TFSS is thick enough to be self supporting, in accordance with the present disclosure;



FIG. 17 shows a process flow for making an interdigitated back-contact back-junction solar cell using thick TFSS where the in-situ emitter is not deposited. Instead, a BSG (boron-doped oxide) layer is deposited on the epitaxial silicon film and patterned to open the base isolation region, in accordance with the present disclosure;



FIG. 18 shows a process flow for making an interdigitated back-contact back-junction solar cell where the TFSS is not thick enough to be self supporting, where in-situ emitter and laser ablation of silicon is used to form the base isolation opening, in accordance with the present disclosure;



FIGS. 19A-19H show a process flow for making an interdigitated back-contact back-junction solar cell where the TFSS is not thick enough to be self supporting, and where instead of in-situ emitter BSG (boron-doped oxide) deposition and selective laser etchback is used to form the base isolation opening, in accordance with the present disclosure;



FIG. 20 shows a process flow for making an interdigitated back-contact back-junction solar cell using a 3-D TFSS, in accordance with the present disclosure;



FIG. 21 shows a process flow for making an interdigitated back-contact back-junction hetero-junction solar cell, in accordance with the present disclosure;



FIGS. 22 through 30 are not found in U.S. patent application Ser. No. 13/118,295 “LASER PROCESSING FOR HIGH-EFFICIENCY THIN CRYSTALLINE SILICON SOLAR CELL FABRICATION” by Virendra V. Rana and filed on May 27, 2011;



FIGS. 22A and 22B are schematics showing the profile of a Gaussian beam and a flat top beam, respectively;



FIG. 23 is a cross-sectional diagram of a back-contact/back-junction cell;



FIGS. 24A-24F are rear/backside views of a back contact solar cell during fabrication;



FIG. 25 is a rear/backside view of the back contact solar cell of FIG. 24A with alternating metal lines contacting the emitter and base regions;



FIGS. 26A-26C are diagrams illustrating three ways a flat-top beam profile may be created;



FIGS. 27A and 27B are schematics showing the profile of a Gaussian beam and a flat top beam highlighting the ablation threshold;



FIGS. 28A and 28B are diagrams showing a Gaussian beam and a flat top beam ablate region profile/footprint, respectively;



FIG. 28C is a graph of overlap and scan speed;



FIGS. 29A and 29B are diagrams illustrating a beam alignment window of a Gaussian beam and flat top beam, respectively;



FIGS. 30A and 30B are diagrams showing a Gaussian beam region profile and a flat top beam region profile, respectively; and



FIG. 30C graphically depicts the results of Table 1.





DETAILED DESCRIPTION

Although the present disclosure is described with reference to specific embodiments, one skilled in the art could apply the principles discussed herein to other areas and/or embodiments without undue experimentation.


We present here laser processing, more specifically pulsed laser processing, schemes that have been developed to address the varying requirements of different processes.


The disclosed methods may be useful in the area of semiconductor device ablation, particularly crystalline silicon ablation. Typically removal of silicon with a laser involves silicon melting and evaporation that leaves undesirable residual damage in the silicon substrate. This damage causes minority carrier lifetime degradation and increased surface recombination velocity (SRV) that reduces the solar cell efficiency. Hence, wet cleaning of the silicon substrate is typically used to remove this damage layer. We present a scheme to reduce this damage to a level acceptable for high efficiency solar cell manufacturing that does not require post-laser-processing wet cleaning, hence simplifying the process flow and reducing the manufacturing cost.


The damage remaining in the silicon substrate upon ablating a certain thickness of it using a laser is related to the amount of laser energy absorbed in the substrate that is not used by the ablated material. If it can be managed that most of the laser energy is used in removing the material then the fraction of the incident energy that seeps into the silicon substrate is minimized, thus minimizing the laser-induced substrate damage and SRV degradation. The penetration of laser energy into silicon depends on the laser pulse length (also called pulse width) and wavelength. The infrared (IR) laser beam, wavelength 1.06 microns, has a long penetration depth in silicon, up to about 1000 microns, while green laser beam, with a wavelength of 532 nm, penetrates only to a depth of approximately 3 to 4 microns. The penetration of UV laser beam, with a wavelength of 355 nm, is even shorter, only about 10 nm. It is clear that using ultra-short pulses of UV or EUV wavelength limits the penetration of the laser energy into silicon. Additionally, shorter laser pulse length results in shorter diffusion of heat into silicon. While a nanoseconds pulse can lead to heat diffusion in silicon to approximately 3 to 4 microns range, the picoseconds pulse reduces it to about 80 to 100 nm, while a femtoseconds pulse is so short that typically there is no heat diffusion into silicon during the laser ablation process. Hence going to shorter pulses with a shorter wavelength lead to diminishing damage to the laser-ablated substrate. For higher production throughput, green or IR wavelengths can be used depending on the extent of laser damage acceptable. Since even under ideal conditions a certain fraction of the energy would still seep into the substrate, this absorption and its undesirable side effects can be further reduced by reducing the laser power. However, this results in a smaller thickness of silicon being ablated (or a lower silicon ablation rate or lower throughput). It has been found that reducing the pulse energy but causing the silicon removal by increasing the overlap of the laser pulses makes the silicon shallow isolation trench smoother. This is an indication of low silicon surface damage. At very low pulse energies the thickness of silicon removed may be small. The desired depth may then be obtained by using multiple overlapped scans of the pulsed laser beam.


A pulsed laser beam with pulse length in the picoseconds range and a wavelength of approximately 355 nm or below is suitable for silicon ablation with low damage enabling low surface recombination velocity (SRV) for passivated ablated surfaces. FIG. 1 shows a 2.25 micron deep and nearly 100 micron wide trench made in a silicon substrate using a picoseconds UV laser beam of Gaussian profile (M2<1.3), nearly 110 microns in diameter with 4 microjoule pulse energy, the laser spots overlapped nearly 15 times. This depth of ablation was obtained using twenty overlapped scans of the laser with each scan removing about 112 nm of silicon. FIG. 2 shows the smooth profile of a 4 micron deep and 110 micron wide trench in silicon obtained using the same picoseconds laser beam with the UV wavelength. The smoothness of the profile should be noted. Such an ablation of silicon is used in all back-contact back-junction solar cells to form regions that isolate base regions from emitter regions. Use of a femtoseconds laser may provide further reduction of laser damage during silicon ablation.


The embodiments of this disclosure are also applicable to the ablation of amorphous silicon. A similar scheme may be used to ablate a desired thickness of amorphous silicon using a pulsed laser beam with femtoseconds pulse length and in some embodiments a UV or green wavelength. Since ablation of amorphous silicon requires much lower energy than crystalline silicon, such a scheme may effectively be used to selectively ablate amorphous silicon films from the crystalline silicon surface for application to hetero-junction solar cells.


This disclosure is also applicable to oxide ablation selective to the underlying substrate, crystalline or amorphous silicon. The oxide film is transparent to laser beams of wavelength down to UV. If a nanoseconds pulse length laser is used to remove the overlying oxide, the removal of oxide takes place by heating and melting of silicon underneath. Because of the pressure from the ablated silicon underneath, the overlying oxide is cracked and removed. This however, creates heavy damage in the silicon substrate so that a wet cleaning treatment is typically used to remove this damaged layer for use in high efficiency cells.


We present here a scheme where the oxide layer is selectively removed from the silicon surface without any appreciable damage to the silicon surface. During the laser ablation, besides heating the material to melt or evaporate it, other effects such as plasma formation take place. Sometimes complex processes can take place at an interface. Using a laser with picoseconds pulse length, the oxide to silicon interface is affected. Using a picoseconds laser with a UV wavelength, the interface effects are enhanced so that separation and delamination of the oxide film takes place from the silicon surface. The silicon surface left behind is virtually free of damage. Picoseconds laser radiation with green or infra-red (IR) wavelength can also be used depending on how much penetration damage of silicon substrate is acceptable. This disclosure will outline the procedure to obtain reduced damage selective ablation of oxide from the silicon surface.



FIGS. 3A-3D disclose the procedure for obtaining reduced damage ablation of oxide. FIG. 3A shows the variation of laser spot opening in a 1000 A PSG (phosphorus-doped oxide)/500 A USG (undoped oxide) stack on a 35 micron thick epitaxial silicon film on a template, using a picoseconds UV laser beam. The oxide layers were deposited using APCVD (atmospheric-pressure CVD) technique. For a given thickness of oxide the spot size depends on the laser fluence (J/cm2). The laser fluence is the laser pulse energy divided by the area of the laser beam. In this case, the laser beam was about 100 microns in diameter with a Gaussian profile (M2<1.3). At very low fluence, the spots are irregular and there is irregular delamination of oxide from the silicon surface as shown in FIG. 3B, while at very high fluence there is extensive damage of silicon as shown in FIG. 3D. The range of fluence shown by line a-a′ indicates the optimum range where the damage to the silicon substrate is minimal as seen in FIG. 3C.



FIG. 4 shows rows of cell contact openings that are selectively opened in the oxide for application in all back-contact (and back-junction) solar cells. FIG. 5 is a close-up of these contacts. The laser ablation spots can be overlapped in both x and y direction to open up an area of any desired length and width on the wafer as shown in FIGS. 6A and 6B. FIG. 6A shows a 180 micron wide opening made by selectively removing the BSG (boron-doped oxide) for base isolation region using picoseconds UV laser beam with ablation spots overlapping in both x and y-direction. Similarly, FIG. 6B shows a 90 micron wide area opened up in USG (undoped oxide) for forming the base region.


The selective ablation of oxide from a silicon surface as disclosed here can be used in solar cell making in several ways. In one application, when using in-situ emitter for back-contact cells, this process is used to open tracks in an oxide film to expose the underlying emitter. The emitter so exposed may be removed using wet etching. This region is then used for base to emitter isolation and with base formed inside it.


In another application, this process is used to open regions that are then used for making metal contacts. For front contacted cells, the oxide passivation can be used on the backside of the cells. The scheme described here is then used to open contacts for the metal that is subsequently deposited on these contacts. In this manner, the metal has localized contact that is conducive to high cell efficiency. For back contacted cells, contacts for both base and emitter may be opened using this scheme.


In a solar cell process flow, a doped oxide may need to be removed without causing any doping of the silicon underneath (i.e., without any appreciable heating of the doped oxide and silicon structure). Since, as described above, the oxide is removed by separation at the oxide/silicon substrate interface when using a picoseconds laser beam, the removal of oxide happens with limited pickup of the dopant from the oxide film being ablated.


The selective ablation of silicon nitride (SiNx) is used for front contacted solar cells. Using laser ablation, the contact area to the emitter surface can be reduced thereby minimizing the area where the SiN passivation is removed. This leads to higher VOC. Picosecond lasers with either UV or green wavelength are suitable for this application, although nanoseconds UV lasers can also be used.


Selective metal ablation from the oxide surface has historically been difficult using lasers. This is because at the high pulse energies needed to ablate metal, the energy is high enough to damage the oxide underneath and cause penetration of metal into oxide. In fact, this is the basis for the process of “laser fired contacts” (LFC) proposed for use in the solar cells.


We disclose three schemes for selectively removing metal from the oxide (or another dielectric) surface with no metal penetration of oxide (or other dielectrics such as silicon nitride) and breaking or cracking of oxide. In all these schemes, aluminum is the first metal in contact with base and emitter (aluminum being used as the contact and light trapping rear mirror layer). A laser with picoseconds pulse length is suitable for this application. For high metal removal rate the IR wavelength is quite suitable. According to the first scheme, metal is ablated at a pulse energy that is lower than the threshold for oxide ablation. If the thickness of metal removed in one scan is lower than the desired thickness, multiple overlapping scans are used to remove the full thickness of metal. Since the pulse energy is below the oxide ablation threshold, a clean removal of metal from the oxide surface is obtained. However, the exact recipe used highly depends on the type of metal in the stack, their thickness and surface roughness, etc.



FIGS. 7A-7C shows the ablation results when patterning a PVD-deposited bi-layer stack of 2400 A of NiV on 1200 A of Al on oxide. It is desired that the metal be removed completely between the runners without breaking through the oxide layer underneath (to prevent shunts in the cell). FIG. 7A shows the threshold for pulse energy, below which this metal stack can be removed without penetration of oxide. This threshold, besides depending on the metal stack characteristics described above, depends on the laser parameters such as spot overlap obtained using a certain pulse repetition rate of the laser as well as the scan speed. With increasing pulse overlap the threshold pulse energy would decrease, because of the energy accumulation in the metal. FIG. 7B shows that using a pulse energy below the threshold for oxide damage, more than twenty scans provided complete isolation of metal runners as determined by the 100M-ohm resistance between parallel lines. FIG. 7C shows a clean 75 micron trench formed in the 2400 A NiV/1200 Al metal stack.


According to the second, high-throughput scheme higher pulse energies are used, since a substantial part of the incident energy is absorbed as it is being ablated thereby reducing damage to the oxide. This approach makes the laser ablation of metal a very high throughput process. Using this scheme we have ablated 1250 A Al/100-250 A of NiV, with or without a tin (Sn) overlayer up to a thickness of 2500 A successfully using a two step process. In the first step the softer metal is removed using 15 microjoule pulses, followed by 30 microjoule pulses both overlapped fifteen times. For thicker aluminum such as 2000 A the second step can be carried out at 50 microjoules with the same number of overlapping of pulses.


The third scheme of metal ablation is applicable to highly reflective films, for example Al/Ag stack (with Al in contact with the cell and Ag on top of Al), such that most of the incident energy of the picoseconds laser is reflected and ablation is drastically reduced. In that case the surface of the reflective metal (Ag) is first dented using a long pulse length nanoseconds laser, pulse length from 10 to 800 nanoseconds, followed by picoseconds cleanup of the aluminum underneath.


This disclosure is also applicable to the selective doping of a substrate. For successful doping of silicon using an overlying layer of the dopant-containing material, the pulse energy should be high enough to melt the silicon but not high enough to ablate it or the dopant layer above it. As the silicon melts, the dopant is dissolved into it. Upon recrystallization of this silicon layer, a doped layer is obtained. For this application a nanoseconds pulse length laser with green wavelength is quite suitable because of its limited penetration into silicon.


The laser processing techniques described above are applicable to planar and 3-D thin-film crystalline silicon substrates. The laser processes described here are suitable for any thickness of the silicon substrate. These include the current standard wafer thickness of ≧150 microns used for crystalline silicon solar cells. However, they become even more advantageous for thin, fragile wafers or substrates as the process in carried out without any contact with the substrate. These include the wafers thinner than 150 micron obtained from monocrystalline CZ ingots or multi-crystalline bricks using advanced wire sawing techniques or by other techniques such as hydrogen implantation followed by annealing to separate the desired thickness of wafer, or thin-film monocrystalline substrates (such as in the thickness range of from a few microns up to 80 microns) obtained using epitaxial deposition of silicon on a sacrificial separation/release layer such as porous silicon and its subsequent lift off.


The laser processing is uniquely suited to three dimensional substrates obtained using pre-structuring of reusable templates and silicon micromachining techniques. One such method is described in the '713 application. FIGS. 8A through 9B show the 3-D thin film silicon substrates obtained using the technique described in that publication. FIG. 8A shows the top view while FIG. 8B shows the cross-section of the TFSS so obtained. For pyramidal substrates, the tips may be flat or may end in a sharp point. FIGS. 9A and 9B show the TFSS with prism structure obtained using a reusable pre-structured 3D template described in the reference above.


Although the laser processes and the process flows described here are applicable to any thickness of the silicon substrate (from less than one micron to over 100 microns), we disclose here their application to solar cells made using thin silicon substrates in the thickness range of from less than 1 micron to about 80 microns, including but not limited to those that are obtained using epitaxial silicon on porous silicon surface of a reusable template as described in the '713 application. To facilitate the understanding of our application, the process flow for obtaining a desired thickness (e.g. from about less than 10 microns up to about 120 microns) of planar monocrystalline TFSSs according to that publication is shown in FIGS. 10A and 10B for planar TFSS that are typically greater than about 50 microns so that they can be handled as self supporting substrates during cell processing, and FIGS. 11A and 11B for planar TFSS that is typically thinner than about 50 microns so that they are not self supporting during cell processing (and hence, are reinforced prior to separation from their host templates). FIGS. 12A-12D show the process flow for obtaining three-dimensional pyramidal silicon substrates. Three-dimensional prism-shaped substrates can be obtained with similar processes, but using a lithography or screen printed pattern that provides for that structure.


The thin planar substrate obtained using the process flow of FIGS. 10A and 10B may be processed according to the process flow of FIG. 13 to obtain high efficiency front contacted solar cells. It should be noted for self-supporting TFSSs it is advantageous to process the template side of the TFSS first before proceeding to the other side. Since the template side of the TFSS is textured during the removal of the quasi-monocrystalline silicon remaining on the TFSS after its separation from the template it is preferably the frontside or sunnyside of the solar cell. The laser processes of selective ablation of silicon oxide and silicon nitride (SiN) are used to advantage in making this front contacted solar cell.



FIG. 14 shows the application of various laser processes for making high efficiency front contacted solar cells using planar TFSSs where the TFSS is too thin to be free standing or self supporting during cell processing. It should be noted that in this case the non-template side surface is processed first with the TFSS on the template. Once this processing is complete the TFSS is first attached to a reinforcement plate or sheet (also called a backplane) on the exposed processed side and then separated from the template. After separation of the backplane-attached (or backplane-laminated) thin-film crystalline silicon solar cell, removal of residual porous silicon, texture etch, and SiN passivation/ARC deposition, and forming-gas anneal (FGA) operation processes are carried out on the released face of TFSS (which will end up being the front surface of the solar cell).



FIG. 15 shows the application of various laser processes for making high efficiency front contacted solar cells using 3-D front TFSS. For this application it is advantageous to have pyramid tips on the template side not be sharp but end in flat ledges.


The processes described here are further uniquely suited to simplifying the all back-contact cell process flow.



FIGS. 16A-16D show the laser processes used on the planar epitaxial substrate to make a back-contact/back-junction solar cell where the TFSS is self supporting (i.e., no backplane attachment to the cell). In this application the epitaxial emitter is deposited in-situ during silicon epitaxy following the deposition of the epitaxial silicon base. The ablation of silicon is then used to remove the emitter from the base isolation regions. At the same time four fiducials are etched into oxide to align subsequent ablation to this pattern. Next, a thermal oxide is grown to passivate the silicon surface that will become the back surface of the back-contact back-junction solar cell. The epitaxial silicon film is then disconnected or released from the template (by mechanical release from the porous silicon interface). Next, the residual porous silicon layer is wet etched and the surface is textured (both can be done using an alkaline etch process). This will become the textured front surface or the sunnyside of the solar cell. Now, the thermal oxide is ablated using a picoseconds UV laser to form base openings inside the base isolation region. The base opening is aligned inside the base isolation region (trench) formed by silicon ablation earlier using the fiducials that were etched in silicon earlier as mentioned above. Next a phosphorous containing oxide layer (PSG) is blanket deposited on the surface. Scanning with a nanosecond green or IR laser aligned to base opening using the fiducials in silicon causes the base to be doped. Also, the region that will have the contact openings to emitter is also doped in a similar manner using the aligned scans of nanosecond green or IR laser. Next, contact opening are made to these doped base and emitter areas using a picoseconds UV laser. Again, the alignment of these contact openings is made using fiducials in silicon. Now, a metal stack layer comprising aluminum as its first layer in contact with the cell (e.g., a stack of 1250 A Al/100-250 A NiV/2250 Sn) is deposited using a suitable method such as a PVD (physical vapor deposition) technique. Next, this layer is patterned using a picoseconds IR laser so that the metal runners are separately connected to the base and emitter regions. After an optional forming gas anneal (FGA), the cell is connected to and reinforced with a backplane with either embedded (Al or Cu) high-conductivity interconnects or no embedded interconnects (in the latter, the final cell metallization can be formed by a copper plating process). The cell is now ready for test and use. FIG. 17 shows the laser processes used on the planar epitaxial substrate to make a back-contact solar cell where epitaxial silicon base is not deposited with an emitter layer. Instead, a boron containing oxide (BSG) layer is deposited and patterned to open the base isolation region. A similar process to that described above is followed except that now the emitter and base are formed simultaneously during a thermal oxidation step according to the process flow outlined in FIG. 17.



FIG. 18 shows a process flow using laser processes on the epitaxial substrate to make a planar back-contact/back-junction solar cell where the TFSS is not self-supporting (hence, a backplane is used). This flow uses the silicon ablation of in-situ doped emitter to form the base isolation region.



FIG. 19A-19H show a process flow using laser processes on the epitaxial substrate to make a planar back contact solar cell where the TFSS is not self-supporting. In this flow, instead of an in-situ emitter layer, the BSG deposition and selective laser ablation followed by thermal oxidation (or a thermal anneal or a thermal oxidizing anneal) is used to form the emitter as well as the base isolation region.



FIG. 20 shows a process flow for making back contacted 3-D solar cells, it is advantageous to have the template side of pyramids end in relatively sharp points. Since the 3-D TFSS can be self-supporting to relatively low thickness (e.g., silicon as thin as about 25 microns), the process flow is similar to that shown in FIG. 16. It should be clear that we again have a choice of using the in-situ emitter followed by laser ablation of silicon, or BSG deposition and selective laser ablation followed by thermal oxidation (or thermal anneal, or thermal oxidizing anneal).


For applications in hetero-junction solar cells, a hetero-junction emitter may be formed by a doped amorphous silicon layer in contact with an oppositely doped crystalline silicon base. For interdigitated back contact solar cells we pattern the amorphous silicon layer and the transparent conducting oxide (TCO) using laser ablation that is selective to the crystalline layer. Femtoseconds pulsewidth lasers with either UV or green wavelength are suitable for this application. A process flow is described in FIG. 21. Several variations of this process flow are possible.


Various embodiments and methods of this disclosure include at least the following aspects: the process to obtain ablation of crystalline and amorphous silicon with reduced damage; the process to obtain oxide ablation for both doped and undoped oxides with reduced damage to silicon; the process to obtain fully isolated metal patterns on a dielectric surface for solar cell metallization; the process to selectively dope the emitter and base contact regions; the use of pulsed laser processing on very thin wafers, including planar and 3-D silicon substrate; the use of pulsed laser processing on substrates obtained using epitaxial deposition on a reusable template made using template pre-structuring techniques; the use of various pulsed laser processes in making front contacted homo-junction solar cells; the use of various pulsed laser processes in making all-back contacted homo-junction solar cells; and the use of various pulsed laser processes in making hetero-junction solar cells.


Although the front contact solar cells are described with p-type base and back-contact back-junction solar cells are described with n-type base, the laser processes described here are equally suited to the substrate with opposite doping, i.e., n-type for front contact solar cell with P+ emitter, and p-type base for back-contact back-junction solar cells with p-type base and n+ emitter.


The following description, tables, and figures disclose the application of flat top laser beams to laser processing methods for interdigitated back-contact cells (IBC). FIGS. 22 through 30 are not found in U.S. patent application Ser. No. 13/118,295 “LASER PROCESSING FOR HIGH-EFFICIENCY THIN CRYSTALLINE SILICON SOLAR CELL FABRICATION” by Virendra V. Rana and filed on May 27, 2011. The description following is directed towards methods for the formation of back contact solar cells utilizing flat top laser beams as compared to traditional Gaussian laser beams. Further, the implementation of flat top laser beams to the laser processing methods described throughout this application provides substantial reduction in damage to silicon, improvement in solar cell fabrication throughput, and a bigger alignment window for defining patterns (e.g. patterns of emitter and base regions) that are inset inside another pattern.



FIGS. 22A and 22B are schematics showing the profile of a Gaussian beam, FIG. 22A, and a flat top beam, FIG. 22B. The beam intensity of the Gaussian beam has a smooth decrease from a maximum at the beam center to the outside of the beam. In contrast, the intensity is “flat” or uniform for the flat top beam through most of its profile (center to outside).


As disclosed herein, high-efficiency back-contacted, back-junction cells with interdigitated back contact (IBC) metallization benefits from the use of at least one or several steps of pulsed laser processing. Laser processing may be utilized in several processing steps throughout the formation of the back contact cell, including: delineating/defining emitter and base regions (or base-to-emitter isolation region), defining back-surface field (BSF) or base regions, doping to form back surface fields (by laser irradiation), selective doping of contacts, opening contacts in the dielectric to base and emitter, and metal patterning. Some of these steps require laser processing of wide areas that are typically produced by overlapping Gaussian beam laser spots. Overlapping severely reduces cell processing speed and may cause silicon damage, resulting in degradation of cell performance and yield. By using flat top beam methods disclosed herein, the overlapping of spots is dramatically reduced so that the semiconductor (e.g., crystalline silicon) substrate damage is significantly reduced and throughput is increased. Also, smaller diameter Gaussian spots may be replaced with a relatively wide flat top laser beam which may further substantially increase the throughput.



FIGS. 23-25 illustrate embodiments of back contact solar cells that may be formed according to the disclosed flat top laser beam processing methods.



FIG. 23 is a cross-sectional diagram of a back-contact/back-junction cell with interdigitated back-contact (IBC) metallization formed from an n-type substrate, such as that disclosed herein. As shown in FIG. 23, alternating emitter and base regions are separated by relatively lightly n-doped substrate regions (the n-type base). The rear/backside surface is covered by a surface passivation layer that provides good surface passivation with low back surface recombination velocity, made of, for example: thermal silicon dioxide, deposited silicon dioxide, or silicon oxide/silicon nitride layers which may be deposited using techniques such as PECVD or APCVD (and/or aluminum oxide deposited by atomic layer deposition or ALD). This surface passivation process may then be followed by making openings in this passivation layer which act as ‘localized contacts’ to the emitter and base regions. Then conductor deposition and patterning (e.g., aluminum as shown in FIG. 23) may be performed to separately connect the emitter and base regions.



FIG. 24A is a rear/backside view of a back contact solar cell illustrating an interdigitated back contact base and emitter design with the emitter and base regions laid out in alternating parallel rows. This backside may be formed, for example, by starting with a surface that is completely covered by an emitter region, then delineating a base region resulting in the formation of the patterned emitter regions. Then doping base contact regions with phosphorous is carried out and contacts are opened to the base and emitter regions in preparation for metallization.



FIGS. 24B-24F are rear/backside views of a back contact solar cell illustrating the back contact cell after key processing steps, wherein any one step or combination of steps may be performed according to a laser process which may or may not utilize a flat top beam. The various laser patterning steps of this particular exemplary method are outlined in FIGS. 24B-24E. Starting with an n-type silicon substrate, a BSG layer is deposited over the whole surface. Next, the emitter to BSF isolation region is defined using laser ablation of the BSG as shown in FIG. 24B. This step, the delineation of base and emitter regions, is referred to herein as the “BSG Opening” step. Alternatively, an in-situ boron doped layer may be deposited during silicon epitaxy and the BSF region defined using laser ablation of silicon.


After the emitter to BSF isolation region is defined in the BSG Open step, a USG layer is deposited on the wafer followed by laser ablation of this layer in patterns that are inlaid to the BSG Open region, as shown in FIG. 24C. This patterning step is referred to herein as the BSF Opening step or base opening step. The BSF openings should be isolated from the edges of the BSG Openings to prevent shunt formation as shunts are deleterious to the solar cell efficiency.


Next, a PSG layer is deposited on the wafer and the silicon exposed to PSG in the BSF opening is doped using selective laser scans of this area. The doped BSF regions (base regions) are outlined in FIG. 24D


Next, the contacts to base and emitter are made using laser ablation as shown in FIG. 24E. It should be noted that the contacts may be point contacts as shown in FIG. 24E or line contacts as shown in FIG. 24F. Also, the number of contacts or the number of lines should be optimized for minimum series resistance of the current conduction path for the solar cell—thus the designs and methods of the disclosed subject matter are not limited to the exemplary embodiments shown herein. It is also important that the contact openings are properly aligned inside the particular doped area so that there is no current leakage.


As disclosed previously, a picoseconds pulse length laser may be used for oxide ablation processes of BSG open, BSF opening, and contact opening, although a nanoseconds pulse length laser may also be used. Further, although IR wavelength may be used, green or UV or smaller wavelengths are more suitable because of their reduced penetration into silicon.


For BSF doping particularly, a nanoseconds pulse length laser may be more suitable because of its penetration into silicon. And although IR wavelength may be used, green wavelength, because of its reduced penetration compared to IR, may be more suitable for the depth of doping typically desired.



FIG. 25 is a rear/backside view of the back contact solar cell of FIG. 24A with alternating metal lines contacting the emitter and base regions. Note that the metal lines for the emitter and base regions are separately connected to busbars not shown in FIG. 25 for simplicity of the figure. This metal pattern may be formed by blanket deposition of a metal followed by laser ablation of the metal to isolate base contacts from emitter contacts. Because relatively thick metal lines are required for good current conduction (usually lines 20 μm thick or thicker), a thinner metal stack such as aluminum/nickel-vanadium/Tin may be first deposited and patterned by lasers, followed by the selective deposition of a thicker metal such as copper using electro or electroless plating. Alternatively, a backplane with relatively thick conductors may be applied and attached to the cell with thin conductor lines. A picoseconds pulse length laser with IR wavelength may be most suitable for ablating the metal stack with good selectivity to the underlying oxide layer.


The disclosed flat top laser beam processing steps that may be utilized to make this structure possible include, but are not limited to: delineation of emitter and base regions (BSF and emitter to BSF isolation) by laser ablation of an emitter or deposited boron doping dielectric (such as boro-silicate glass BSG deposited by APCVD); delineation of the BSF region by opening the dielectric covering the opening made in the BSG; N+ doping of the base (e.g., with phosphorus); opening of metallization contacts to base and emitter regions; and metal patterning using metal laser ablation to isolate base and emitter contacts. FIGS. 26A-26C are diagrams illustrating three ways a flat-top beam profile may be created (diagrams reproduced from F. M. Dickey and S. C. Holswade, “Laser Beam Shaping: Theory and Techniques”, Mercel Dekker Inc., NY, which is hereby incorporated by reference in its entirety). FIG. 26A illustrates one technique for creating a flat top beam profile, the so-called “aperturing of the beam.” Using this method, the Gaussian beam is made flatter by expanding it and an aperture is used to select a reasonable flat portion of the beam and to cut-out the gradually decreasing ‘sidewall’ areas of the beam. Using this method, however, may cause a significant loss of beam power.


A second example method for creating a flat top beam, as shown FIG. 26B, uses beam integration wherein multiple-aperture optical elements, such as a micro-lens array, break the beam into many smaller beams and recombine them at a fixed plane. This beam integration method may work very well with beams of high M2 value.


A third beam shaping system for creating a flat top beam, as shown FIG. 26C, uses a diffractive grating or a refractive lens to redistribute the energy and map it to the output plane. Any known method, including the three example techniques disclosed in FIGS. 26A-26C, may be used obtain the flat top beam profile for applications described herein. The suitability and choice of a flat top laser beam formation method depends on a variety of factors including the available beam characteristics and the results desired.



FIGS. 27A and 27B are schematics showing the profile of a Gaussian beam and a flat top beam highlighting the ablation threshold. As shown in FIGS. 27A and 27B, a flat top laser beam, particularly as compared to a Gaussian beam, can substantially reduce the laser damage during ablation and doping processing. For Gaussian beams there is substantial excessive laser intensity above that required for ablation, particularly in the center of the beam, that can cause damage of silicon (as shown in FIG. 27A). The flat top beam can be configured so the peak intensity is only slightly above that required to ablate the material (the ablation threshold as shown in FIG. 27B) and the damage that may be caused by the high intensity of the Gaussian beam is avoided.


A flat top beam, whether having a square or rectangular cross section, offers throughput advantages particularly as compared to a Gaussian beam. FIG. 28A is diagram showing a Gaussian beam ablated region profile/footprint. The circular shaped spots of a Gaussian beam are required to overlap substantially to minimize the zigzag outline of the pattern, typically as much as 50% overlap (FIG. 28A). FIG. 28B is diagram showing a flat top beam ablate region profile/footprint. Since the square or rectangular flat top beam have flat edges, thus creating a flat outline, the overlap can be significantly reduced (FIG. 28B). FIG. 28C is a graph showing the improvement in scan speed as beam overlap is reduced. Note that even for an overlap of 30%, a scan speed increase of 33% may be realized.



FIG. 29A is a diagram illustrating a beam alignment window of a Gaussian beam and FIG. 29B is a diagram illustrating a beam alignment window of a flat top beam. As can be seen in FIGS. 29A and 29B, yet another advantage of using a flat top beam for making inlaid patterns is the larger alignment window the flap top beam provides. The circular shaped spots obtained from a Gaussian beam create zigzag edges of the ablated regions (FIG. 29A). The alignment margin of M as shown in FIG. 29A is reduced and limited to M-a-b due to the waviness of the zigzag edge profile.


However, the ablation region edges created using a flat top beam are straight allowing the alignment margin to stay at M. For the back contact back junction solar cells described herein, BSF openings are formed inside the BSG Open regions, and contact openings are formed inside the BSF region. Hence, a larger alignment margin is important as it allows for smaller BGS Open, BSF, and contact regions. Thus reducing the electrical shading and improving solar cell performance.


Since the overlap of square or rectangular flat top beam can be reduced in both x and y direction while making a large area ablation or doping, the throughput is significantly enhanced. Also, since the size of the square or rectangular flat top can be increased without causing excessive zigzagging of the perimeter, throughput is further increased. Table 1 shows the reduction in the number of scans needed to open a 150 μm wide line, such as used for delineating the base area by ablating the BSG film.


Table 1 below shows the throughput of Gaussian vs. Flat Top laser beams for creating a 90 μm wide base opening. The results of Table 1 are shown graphically in FIG. 30C.














TABLE 1






Width
Spot

Pitch of
Number



of line
Size

scans
of scans


PROCESS
(um)
(um)
Overlap %
(um)
per line







BSG Ablation with
150
30
50
15
9


Gaussian


BSG Ablation with Flat
150
30
20
24
6


Top


BSG Ablation with Flat
150
60
20
48
3


Top










FIG. 30C shows the throughput advantage of flat top beams (the 60 μm flat top beam region profile is depicted in FIG. 30B) as compared to the Gaussian beam (the 30 μm flat top beam region profile is depicted in FIG. 30A), for a high productivity laser system that can process four wafers at a time. To further reduce cost, for example, two lasers may be utilized with each laser beam further split into two. However, many variations of this flat top laser beam hardware and fabrication scheme are possible.


Also, because overlap is significantly reduced in both x and y directions when using a flat top beam, the laser induced damage of silicon is greatly reduced as compared to the Gaussian beam.


Similar throughput advantages may also result when utilizing a flat top beam for opening the oxide region for BSF, doping the BSF region using the overlying PSG, forming base and metal contact openings if they are line contacts, and the metal ablation isolation lines—all with the concurrent advantage of reduced silicon damage. Additionally, utilizing a flat top beam provides the advantage of increased alignment window for BSF opening inside the BSG opening and contact opening inside the BSF. Flat top laser processing methods may also increase throughput for forming a back surface field. For example, the back surface field may be formed by doping the base region, opened as described, with an n-type dopant such as phosphorous. For this process the base is covered with a phosphorus-doped silicon oxide (PSG) layer and the doping may be performed by irradiating this region with a laser beam. While uniformly doping this region using Gaussian laser beams requires overlapping, overlapping is minimized or may be completely reduced using a flat top beam. And as with the base and emitter region delineation and back surface field delineation described herein, utilizing a flat top laser beam provides a substantial throughput and reduced damage advantage as required overlapping is decreased. It should be noted that for forming a back surface field, the beam need to be flat top beam only in one direction—normal to the scan, whereas it may be Gaussian in the direction of the scan. This type of beam is called a hybrid flat top beam.


Importantly, for forming isolated base or emitter contacts, although overlap is not an issue, the silicon damage is still reduced using a flat top beam because of the absence, unlike Gaussian, of a high intensity peak in the center of the beam (as shown in FIGS. 27A and 27B).


Those with ordinary skill in the art will recognize that the disclosed embodiments have relevance to a wide variety of areas in addition to those specific examples described above.


The foregoing description of the exemplary embodiments is provided to enable any person skilled in the art to make or use the claimed subject matter. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the innovative faculty. Thus, the claimed subject matter is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.


It is intended that all such additional systems, methods, features, and advantages that are included within this description be within the scope of the claims.

Claims
  • 1. A method for making a crystalline silicon solar cell substrate, comprising the steps of: depositing a doped dielectric layer over the backside surface of a crystalline silicon substrate, said doped dielectric layer having a polarity opposite said polarity of said crystalline silicon substrate;exposing portions of said backside surface of said crystalline substrate through said doped dielectric layer;depositing an overlayer over said doped dielectric layer and said exposed portions of said backside surface of said crystalline silicon substrate;performing pulsed laser ablation of said overlayer with a flat top laser beam on said silicon substrate to form continuous base openings nested within said exposed portions of said backside surface of said crystalline silicon substrate, said flat top laser beam having a beam intensity profile flatter as compared to a Gaussian beam intensity profile and having a rectangular beam cross section; andforming doped base regions in said crystalline silicon substrate through said continuous base openings.
  • 2. The method of claim 1, wherein said flat top laser beam is created according to an aperturing of the beam method.
  • 3. The method of claim 1, wherein said flat top laser beam is created according to a beam integration method.
  • 4. The method of claim 1, wherein said flat top laser beam is created according to a diffractive grating method.
  • 5. The method of claim 1, wherein said step of exposing portions of said backside surface of said crystalline substrate through said doped dielectric layer is performed via pulsed laser ablation.
  • 6. The method of claim 5, wherein said pulsed laser ablation is a pulsed laser ablation with a flat top laser beam, said flat top laser beam having a beam intensity profile flatter as compared to a Gaussian beam intensity profile and a rectangular beam cross section.
  • 7. The method of claim 1, wherein said step of forming doped base regions in said base openings comprises at least irradiating a phosphorus-doped silicon oxide layer to form doped base regions.
  • 8. The method of claim 1, wherein said step of forming doped base regions in said base openings comprises at least irradiating said base region with a hybrid flat top laser beam to form doped base regions.
  • 9. The method of claim 1, wherein said pulsed laser ablation of said overlayer with a flat top laser beam has an infrared wavelength.
  • 10. The method of claim 9, wherein said pulsed laser ablation of said overlayer with a flat top laser beam has an infrared wavelength and uses a nanoseconds pulse length.
  • 11. The method of claim 9, wherein said pulsed laser ablation of said overlayer with a flat top laser beam has an infrared wavelength and uses a picoseconds pulse length.
  • 12. The method of claim 1, wherein said pulsed laser ablation of said overlayer with a flat top laser beam has a green wavelength.
  • 13. The method of claim 12, wherein said pulsed laser ablation of said overlayer with a flat top laser beam has a green wavelength and uses a nanoseconds pulse length.
  • 14. The method of claim 12, wherein said pulsed laser ablation of said overlayer with a flat top laser beam has a green wavelength and uses a picoseconds pulse length.
  • 15. The method of claim 14, wherein contacts nested within said base regions are continuous.
  • 16. The method of claim 1, wherein said pulsed laser ablation of said overlayer with a flat top laser beam has an ultraviolet wavelength.
  • 17. The method of claim 16, wherein said pulsed laser ablation of said overlayer with a flat top laser beam has an ultraviolet wavelength and uses a nanoseconds pulse length.
  • 18. The method of claim 16, wherein said pulsed laser ablation of said overlayer with a flat top laser beam has an ultraviolet wavelength and uses a picoseconds pulse length.
  • 19. The method of claim 1, wherein said pulsed laser ablation of said overlayer with a flat top laser beam uses a nanoseconds pulse length.
  • 20. The method of claim 1, wherein said pulsed laser ablation of said overlayer with a flat top laser beam uses a picoseconds pulse length.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application Ser. No. 61/391,863 filed Oct. 11, 2010 which is hereby incorporated by reference in its entirety. This application is also a continuation-in-part of U.S. patent application Ser. No. 13/118,295 filed May 27, 2011, U.S. patent application Ser. No. 11/868,488 filed Oct. 6, 2007, U.S. patent application Ser. No. 11/868,492 filed Oct. 6, 2007, U.S. patent application Ser. No. 12/774,713 filed May 5, 2010, and U.S. patent application Ser. No. 13/057,104 filed Feb. 1, 2011, which are also hereby incorporated by reference in their entirety.

US Referenced Citations (203)
Number Name Date Kind
4043894 Gibbs Aug 1977 A
4070206 Kressel et al. Jan 1978 A
4082570 House et al. Apr 1978 A
4165252 Gibbs Aug 1979 A
4249959 Jebens Feb 1981 A
4251679 Zwan Feb 1981 A
4348254 Lindmayer Sep 1982 A
4361950 Amick Dec 1982 A
4409423 Holt Oct 1983 A
4427839 Hall Jan 1984 A
4430519 Young Feb 1984 A
4461922 Gay et al. Jul 1984 A
4479847 McCaldin et al. Oct 1984 A
4626613 Wenham et al. Dec 1986 A
4672023 Leung Jun 1987 A
4800179 Mukai Jan 1989 A
4922277 Carlson May 1990 A
5011565 Dube et al. Apr 1991 A
5024953 Uematsu et al. Jun 1991 A
5073230 Maracas et al. Dec 1991 A
5112453 Behr et al. May 1992 A
5208068 Davis May 1993 A
5248621 Sano Sep 1993 A
5316593 Olson et al. May 1994 A
5348589 Arai et al. Sep 1994 A
5348618 Canham et al. Sep 1994 A
5397400 Matsuno et al. Mar 1995 A
5458755 Fujiyama et al. Oct 1995 A
5459099 Hsu Oct 1995 A
5494832 Lehmann et al. Feb 1996 A
5538564 Kaschmitter Jul 1996 A
5616185 Kukulka Apr 1997 A
5641362 Meier Jun 1997 A
5645684 Keller Jul 1997 A
5660680 Keller Aug 1997 A
5681392 Swain Oct 1997 A
5704992 Willeke et al. Jan 1998 A
5882988 Haberern et al. Mar 1999 A
5899360 Mack et al. May 1999 A
5928438 Salami et al. Jul 1999 A
5989977 Wu et al. Nov 1999 A
5994640 Bansemir et al. Nov 1999 A
6058945 Fujiyama et al. May 2000 A
6091021 Ruby Jul 2000 A
6096229 Shahid Aug 2000 A
6114046 Hanoka Sep 2000 A
6127623 Nakamura et al. Oct 2000 A
6143629 Sato Nov 2000 A
6204443 Kiso et al. Mar 2001 B1
6225193 Simpson et al. May 2001 B1
6294725 Hirschberg et al. Sep 2001 B1
6331208 Nishida et al. Dec 2001 B1
6399143 Sun Jun 2002 B1
6416647 Dordi et al. Jul 2002 B1
6428620 Yamagata et al. Aug 2002 B1
6429037 Wenham et al. Aug 2002 B1
6441297 Keller et al. Aug 2002 B1
6448155 Iwasaki et al. Sep 2002 B1
6461932 Wang Oct 2002 B1
6524880 Moon et al. Feb 2003 B2
6534336 Iwane et al. Mar 2003 B1
6551908 Ukiyo et al. Apr 2003 B2
6555443 Artmann et al. Apr 2003 B1
6566235 Nishida et al. May 2003 B2
6602760 Poortmans et al. Aug 2003 B2
6602767 Nishida et al. Aug 2003 B2
6613148 Rasmussen Sep 2003 B1
6624009 Green et al. Sep 2003 B1
6645833 Brendel Nov 2003 B2
6649485 Solanki et al. Nov 2003 B2
6653722 Blalock Nov 2003 B2
6664169 Iwasaki et al. Dec 2003 B1
6756289 Nakagawa et al. Jun 2004 B1
6818104 Iwasaki et al. Nov 2004 B2
6881644 Malik et al. Apr 2005 B2
6887804 Sun May 2005 B2
6946052 Yanagita et al. Sep 2005 B2
6964732 Solanki Nov 2005 B2
6982218 Preu et al. Jan 2006 B2
7014748 Matsumura et al. Mar 2006 B2
7022585 Solanki Apr 2006 B2
7026237 Lamb Apr 2006 B2
7057256 Carey et al. Jun 2006 B2
7309658 Lazovsky et al. Dec 2007 B2
7368756 Bruhns et al. May 2008 B2
7402523 Nishimura Jul 2008 B2
7517709 Borden Apr 2009 B1
7857907 Cho et al. Dec 2010 B2
8399331 Moslehi et al. Mar 2013 B2
8409976 Hieslmair Apr 2013 B2
8637340 Moslehi et al. Jan 2014 B2
9214585 Rana Dec 2015 B2
20020079290 Holdermann Jun 2002 A1
20020153039 Moon et al. Oct 2002 A1
20020168592 Vezenov Nov 2002 A1
20020179140 Toyomura Dec 2002 A1
20030017712 Brendel Jan 2003 A1
20030039843 Johnson Feb 2003 A1
20030124761 Baert Jul 2003 A1
20040028875 Van Rijn Feb 2004 A1
20040042080 Caudle et al. Mar 2004 A1
20040173790 Yeo Sep 2004 A1
20040175893 Vatus et al. Sep 2004 A1
20040192044 Degertekin et al. Sep 2004 A1
20040200520 Mulligan et al. Oct 2004 A1
20040235406 Duescher Nov 2004 A1
20040259335 Narayanan Dec 2004 A1
20040261834 Basore et al. Dec 2004 A1
20040265587 Koyanagi Dec 2004 A1
20050160970 Niira Jul 2005 A1
20050172996 Hacke et al. Aug 2005 A1
20050172998 Gee et al. Aug 2005 A1
20050176164 Gee et al. Aug 2005 A1
20050177343 Nagae Aug 2005 A1
20050199279 Yoshimine et al. Sep 2005 A1
20050274410 Yuuki et al. Dec 2005 A1
20050281982 Li Dec 2005 A1
20060009008 Kaneuchi et al. Jan 2006 A1
20060021565 Zahler et al. Feb 2006 A1
20060043495 Uno Mar 2006 A1
20060054212 Fraas et al. Mar 2006 A1
20060060238 Hacke et al. Mar 2006 A1
20060070884 Momoi et al. Apr 2006 A1
20060088984 Li et al. Apr 2006 A1
20060105492 Veres et al. May 2006 A1
20060130891 Carlson Jun 2006 A1
20060177988 Shea et al. Aug 2006 A1
20060196536 Fujioka Sep 2006 A1
20060228897 Timans Oct 2006 A1
20060231031 Dings et al. Oct 2006 A1
20060266916 Miller et al. Nov 2006 A1
20060283495 Gibson Dec 2006 A1
20060286775 Singh et al. Dec 2006 A1
20070077770 Wang et al. Apr 2007 A1
20070082499 Jung et al. Apr 2007 A1
20070137692 Carlson Jun 2007 A1
20070151598 De Ceuster et al. Jul 2007 A1
20070157965 Park et al. Jul 2007 A1
20070256728 Cousins Nov 2007 A1
20080047601 Nag et al. Feb 2008 A1
20080128641 Henley et al. Jun 2008 A1
20080132054 Ribeyron et al. Jun 2008 A1
20080157283 Moslehi Jul 2008 A1
20080202576 Hieslmair Aug 2008 A1
20080202577 Hieslmair Aug 2008 A1
20080210294 Moslehi Sep 2008 A1
20080264477 Moslehi Oct 2008 A1
20080289684 Moslehi Nov 2008 A1
20080295887 Moslehi Dec 2008 A1
20090042320 Wang et al. Feb 2009 A1
20090107545 Moslehi Apr 2009 A1
20090301549 Moslehi Dec 2009 A1
20090301557 Agostinelli et al. Dec 2009 A1
20100022074 Wang et al. Jan 2010 A1
20100051085 Weidman et al. Mar 2010 A1
20100055822 Weidman et al. Mar 2010 A1
20100059109 Nakayashiki et al. Mar 2010 A1
20100108130 Ravi May 2010 A1
20100116316 Moslehi et al. May 2010 A1
20100144079 Mayer et al. Jun 2010 A1
20100144080 Ong Jun 2010 A1
20100148318 Wang et al. Jun 2010 A1
20100148319 Wang et al. Jun 2010 A1
20100154998 Ong Jun 2010 A1
20100175752 Wang et al. Jul 2010 A1
20100203711 Wang et al. Aug 2010 A1
20100224229 Pralle et al. Sep 2010 A1
20100240172 Rana et al. Sep 2010 A1
20100243040 Kim Sep 2010 A1
20100267186 Wang et al. Oct 2010 A1
20100267245 Kamian et al. Oct 2010 A1
20100279494 Wang et al. Nov 2010 A1
20100294333 Wang et al. Nov 2010 A1
20100294356 Parikh et al. Nov 2010 A1
20100300518 Moslehi et al. Dec 2010 A1
20100304521 Seutter et al. Dec 2010 A1
20100304522 Rana et al. Dec 2010 A1
20100319763 Park et al. Dec 2010 A1
20110014742 Parikh et al. Jan 2011 A1
20110030610 Kamian et al. Feb 2011 A1
20110265864 Kim et al. Nov 2011 A1
20110300665 Harley et al. Dec 2011 A1
20110315186 Gee Dec 2011 A1
20120028399 Moslehi et al. Feb 2012 A1
20120055541 Granek et al. Mar 2012 A1
20120178203 Moslehi et al. Jul 2012 A1
20120225515 Moslehi et al. Sep 2012 A1
20120227810 Hieslmair Sep 2012 A1
20120291859 Vineis et al. Nov 2012 A1
20130130430 Moslehi et al. May 2013 A1
20130164883 Moslehi et al. Jun 2013 A1
20130217172 Rana et al. Aug 2013 A1
20140017846 Moslehi et al. Jan 2014 A1
20140158193 Desphande et al. Jun 2014 A1
20140370650 Moslehi et al. Dec 2014 A1
20150054903 Liu Feb 2015 A1
20150090328 Smith Apr 2015 A1
20150140721 Moslehi et al. May 2015 A1
20150162487 Deshazer Jun 2015 A1
20150171230 Kapur Jun 2015 A1
20150171240 Kapur Jun 2015 A1
20150311378 Kapur Oct 2015 A1
20160093763 Rana Mar 2016 A1
Foreign Referenced Citations (21)
Number Date Country
10 2009 018112 Dec 2010 DE
06-260670 Sep 1994 JP
2002-299661 Oct 2002 JP
10-2009-0025998 Mar 2009 KR
10-2010-0085736 Jul 2010 KR
10-2010-0096819 Sep 2010 KR
10-2010-0102255 Sep 2010 KR
10-2010-0107258 Oct 2010 KR
10-2010-0128132 Dec 2010 KR
10-1023144 Mar 2011 KR
10-2011-0122214 Nov 2011 KR
10-2011-0129084 Dec 2011 KR
PCTEP1999008573 May 2000 WO
WO2008156631 Dec 2008 WO
WO2010057060 May 2010 WO
WO2010091466 Aug 2010 WO
WO2010135153 Nov 2010 WO
WO2011072153 Jun 2011 WO
WO2011150397 Dec 2011 WO
WO2012092537 Jul 2012 WO
WO2012162276 Nov 2012 WO
Non-Patent Literature Citations (36)
Entry
Alvin D. Compaan, Photovoltaics: Clean Power for the 21st Century, Solar Energy Materials & Solar Cells, 2006, pp. 2170-2180, vol. 90, Elsevier B.V.
C.Berge, 150-mm Layer Transfer for Monocrystalline Silicon Solar Cells, Solar Energy Materials & Solar Cells, 2006, pp. 3102-3107, vol. 90, Elsevier B.V.
C.Oules et al, Silicon on Insulator Structures Obtained by Epitaxial Growth of Silicon over Porous Silicon, Journal of the Electrochemical Society, Inc., 1992, p. 3595, vol. 139, No. 12, Meylan Cedex, France.
C.S.Solanki, et al, Porous Silicon Layer Transfer Processes for Solar Cells, Solar Energy Materials & Solar Cells, 2004, pp. 101-113, vol. 83, Elsevier B.V., Leuven, Belgium.
C.S.Solanki, et al, Self-Standing Porous Silicon Films by One-Step Anodizing, Journal of Electrochemical Society, 2004, pp. C307-C314, vol. 151, The Electrochemical Society, Inc., Leuven, Belgium.
F.Duerinckx, et al, Reorganized Porous Silicon Bragg Reflectors for Thin-Film Silicon Solar Cells, IEEE Electron Device Letters, Oct. 2006, vol. 27, No. 10.
Francois J. Henley, Layer-Transfer Quality Cleave Principles, SiGen, 2005, Jul. 8, pp. 1-6, The Silicon Genesis Corporation, San Jose, California.
H.J.Kim, et al, Large-Area Thin-Film Free-Standing Monocrystalline Si Solar cells by Layer Transfer, Leuven, Belgium, IEEE.
J.H.Werner et al, From Polycrystalline to Single Crystalline Silicon on Glass, Thin Solid Films, 2001, pp. 95-100, vol. 383, Issue 1-2, Elsevier Science B.V., Germany.
J.J. Schermer et al., Epitaxial Lift-Off for large area thin film III/V devices, phys. Stat. sol. (a) 202, No. 4, 501-508 (2005).
Jianhua Zhao, et al, A 19.8% Efficient Honeycomb Multicrystalline Silicon Solar Cell with Improved Light Trapping, IEEE Transactions on Electron Devices, 1999, vol. 46, No. 10.
K. Van Nieuwenhuysen et al., Progress in epitaxial deposition on low-cost substrates for thin-film crystalline silicon solar cells at IMEC, Journal of Crystal Growth, 2006, pp. 438-441, vol. 287, Elsevier B.V., Leuven, Belgium.
K.L. Chopra et al., Thin-Film Solar Cells: An Overview, Progress in Photovoltaics: Research and Applications, 2004, pp. 69-92, vol. 12, John Wiley & Sons, Ltd.
Lammert et al., The Interdigitated Back Contact Solar Cell: A Silicon Solar Cell for Use in Concentrated Sunlight, IEEE Transactions on Electron Devices, pp. 337-342.
MacDonald et al., “Design and Fabrication of Highly Topographic Nano-imprint Template for Dual Damascene Full 3-D Imprinting,” Dept. of Chemical Eng., University of Texas at Austin, Oct. 24, 2005.
Martin A. Green, Consolidation of Thin-Film Photovoltaic.
Technology: The Coming Decade of Opportunity, Progress in Photovoltaics: Research and Applications, 2006, pp. 383-392, vol. 14, John Wiley & Sons, Ltd.
Martin A. Green, Silicon Photovoltaic Modules: A Brief History of the First 50 Years, Progress in Photovoltaics: Research and Applications, 2005, pp. 447-455, vol. 13, John Wiley & Sons, Ltd.
Nobuhiko Sato et al, Epitaxial Growth on Porous Si for a New Bond and Etchback Silicon-on-Insulator, Journal of Electrochemical Society, Sep. 1995, vol. 142, No. 9, The Electrochemical Society, Inc., Hiratsuka, Japan.
P.J.Verlinden, et al, Sliver® Solar Cells: A New Thin-Crystalline Silicon Photovoltaic Technology, Solar Energy Materials & Solar Cells, 2006, pp. 3422-3430, vol. 90, Elsevier B.V.
P.R. Hageman et al., Large Area, Thin Film Epitaxial Lift Off III/V Solar Cells, 25th PVSC, 1996, May 13-17, Washington D.C., IEEE.
Photovoltaic Technology Research Advisory Council, A Vision for Photovoltaic Technology, 2005, pp. 1-41, European Commision Publications Office.
Prometheus Institute, U.S. Solar Industry Year in Review: U.S. Solar Energy Industry Charging Ahead, (SEIA) The Solar Energy Industry Association.
R.Brendel, et al, Sol-Gel Coatings for Light Trapping in Crystalline Thin Film Silicon Solar Cells, Journal of Non-Crystalline Solids, 1997, pp. 391-394, vol. 218, Elsevier Science B.V., Germany.
Richard Auer et al, Simplified Transfer Process for High-Current Thin-Film Crystalline Si Solar Modules, 3rd World Conference on Photovoltaic Energy Conversion, May 11-18, 2003, Osaka, Japan.
Richard M. Swanson, A Vision for Crystalline Silicon Photovoltaics, Progress in Photovoltaics: Research and Applications, 2006, pp. 443-453, vol. 14, John Wiley & Sons, Ltd.
Rolf Brendel, A Novel Process for Ultrathin Monocrystalline Silicon Solar Cells on Glass, 14th European Photovolaic Solar Energy Conference, Jun. 30-Jul. 4, 1997, Barcelona, Spain.
Rolf Brendel, Review of Layer Transfer Processes for Cystalline Thin-Film Silicon Solar Cells, the Japan Journal of Applied Physics, 2001, pp. 4431-4439, vol. 40, Part 1, No. 7, The Japan Society of Applied Physics, Japan.
Rolf Brendel, Thin-Film Crystalline Silicone Mini-Modules Using Porous Si for Layer Transfer, Solar Energy, 2004, pp. 969-982, vol. 77, Elsevier Ltd., Germany.
S. Hegedus, Thin Film Solar Modules: The Low Cost, High Throughput and Versatile Alternative to Si Wafers, Progress in Photvoltaics: Research and Applications, 2006, pp. 393-411, vol. 14, John Wiley & Sons, Ltd.
Takao Yonehara, et al, Epitaxial Layer Transfer by Bond and Etch Back of Porous Si, Applied Physics Letter 64, Apr. 18, 1994, vol. 16, American Institute of Physics.
Toshiki Yagi, et al, Ray-Trace Simulation of Light Trapping in Silicon Solar Cell with Texture Structures, Solar Energy Materials & Solar Cells, 2006, pp. 2647-2656, vol. 90, Elsevier B.V.
Grohe et al. (2009) “Novel laser technologies for crystalline silicon solar cell production” Proceedings of SPIE, 7202: 72020P (1-12) DOI: 10.1117/12.810128.
Hermann et al. (Nov. 7, 2009) “Picosecond laser ablation of Si02 layers on silicon substrates” Applied Physics A; Materials Science & Processing, 99(1): 151-158.
Mangersnes et al. (Feb. 23, 2010) “Damage free laser ablation of Si02 for local contact opening on silicon solar cells using an a-Si: H buffer layer” Journal of Applied Physics, 107(4): 43518 (1-6).
Palani et al. (2010) “Investigation on Laser-annealing and Subsequent Laser-nanotexturing of Amorphous Silicon (a-Si) Films for Photovoltaic Application” JLMN-Journal of Laser Micro/Nanoengineering, 5(2): 150-155.
Related Publications (1)
Number Date Country
20120122272 A1 May 2012 US
Provisional Applications (1)
Number Date Country
61391863 Oct 2010 US
Continuation in Parts (5)
Number Date Country
Parent 11868488 Oct 2007 US
Child 13271212 US
Parent 11868492 Oct 2007 US
Child 11868488 US
Parent 12774713 May 2010 US
Child 11868492 US
Parent 13057104 Aug 2012 US
Child 12774713 US
Parent 13118295 May 2011 US
Child 13057104 US