Method for making a fin and device for implementing said method

Information

  • Patent Grant
  • 8595932
  • Patent Number
    8,595,932
  • Date Filed
    Friday, February 27, 2009
    15 years ago
  • Date Issued
    Tuesday, December 3, 2013
    11 years ago
Abstract
The invention relates to a method for manufacturing a fin (4) of width l and comprising corrugations (20) for a heat exchanger comprising at least one step of splitting a metal sheet (2) into at least two strips (4) of width l and a step of folding the strips (4) of width l in order to obtain the corrugations (20). The steps of splitting and of folding the metal sheet (2) take place simultaneously. A further subject of the invention is a device for applying such a method and a fin and a heat exchanger obtained by such a method, particularly for use in the motor-vehicle field.
Description
RELATED APPLICATIONS

This application claims priority to and all the advantages of International Patent Application No. PCT/EP2009/052404, filed on Feb. 27, 2009, which claims priority to French Patent Application No. FR 08/01051, filed on Feb. 27, 2008.


The invention relates to a method for manufacturing a fin, a device for applying such a method and a fin and a heat exchanger obtained by such a method. It will find its applications notably in the field of heat exchangers for motor vehicles.


The function of a heat exchanger is to exchange heat between a first fluid circulating inside tubes of said heat exchanger and a second fluid such as, for example, atmospheric air. In order to increase the exchange of heat between these fluids, it is normal to furnish the heat exchangers with a plurality of fins interposed between two tubes of the heat exchanger and making it possible to increase the exchange surfaces and/or to disrupt the flow of the fluids.


The invention relates more particularly to a method for manufacturing a fin, which is of the corrugated type. These fins are also called “inserts” when they are situated outside the circulation tubes of the heat exchanger and “agitators” when they are situated inside the tubes. These corrugated fins may notably be used in the case of brazed heat exchangers.


Already known, notably in document JP 11-147149, is a method for manufacturing a fin of width l and comprising corrugations for a heat exchanger comprising a step of splitting a metal sheet into at least two strips of width l and a step of folding the strips of width l in order to obtain the corrugations. In this document, a first tool splits a metal sheet along its longitudinal axis; the resulting two metal strips then move into a second tool which forms corrugations in said metal strips.


However, the rate of production of corrugated strips by such a manufacturing method is not satisfactory. This causes a limitation in the rate of the machines for assembling the core of the heat exchanger, downstream.


The object of the present invention is to remedy this drawback.


For this purpose, it proposes a method for manufacturing a fin of the type defined above in which the steps of splitting and of folding said metal sheet take place simultaneously.


Therefore, the invention makes it possible to increase the capacity of the machines for manufacturing corrugated fins thus increasing the general rate of the process of assembling the core of a heat exchanger.





Further subjects of the present invention are a device allowing the application of the method and a fin and a heat exchanger obtained by such a method.



FIG. 1 represents an exemplary application of the method and the device according to the invention.



FIG. 2 represents schematically a detail of the device according to the invention, this detail being situated at the disks called splitting disks of the wheels of the device according to the invention.






FIG. 1 represents a very long metal sheet 2; the metal sheet is preferably made of aluminum. During the manufacture of a fin 4 according to the method of the present invention, the metal sheet 2 is guided in the direction of the arrow F in order to form the fin 4.


For this a splitting and a folding of the metal sheet 2 is carried out. According to the invention, these two steps are simultaneous.


The method for manufacturing the fin 4 also comprises, for example, a step of forming transverse slots (not shown in FIG. 1) at a distance from one another in the flat zones of the corrugations of the strips of width l; the slots may notably be oriented parallel to the longitudinal axis of a fin 4. In this instance, the longitudinal axis of a fin 4 is intended to be an axis in a direction perpendicular to the width l of a fin 4 or else an axis parallel to the direction F as shown in FIG. 1. The step of forming the transverse slots takes place by cutting and lifting a portion of the fin. More particularly, the formation of the transverse slots is carried out on the flat zones connecting two adjacent corrugations and not over the whole of the fin 4.


These transverse slots form a flow deflector making it possible to improve the exchange of heat.


The step of forming the transverse slots may take place simultaneously with the steps of splitting and of folding the strips of width l.


The method for manufacturing the fin 4 may also comprise a step of cutting the fin 4 of width l to a predetermined length.


In order to apply the method described above, the device according to the invention consists of at least two forming wheels 8 and 10, each furnished with means 12 for deforming the metal sheet 2. The forming wheels 8 and 10 are formed by a stack of disks called deformation disks or forming disks 30 between which are inserted, at a determined height, one or more disks called splitting disks 22. For reasons of simplification of FIG. 1, the deformation disks are shown in the form of four blocks 30-A, 30-B, 30-C and 30-D.


Each deformation disk 30 comprises deformation means 12. The deformation means 12 are, in this instance, formed by teeth protruding radially, each tooth being formed by two ridges connected at a peak.


In other words, the deformation means 12 may also be seen as so many series of peaks 14 alternating with series of hollows 16, provided at the circumference of each disk.


The deformation disks 30 may also be furnished with means capable of forming the transverse slots defining a deflector as described above. The means or sharp edges are situated on one of the two ridges of a tooth. A sharp edge may be present at the end of certain teeth or each tooth of a deformation disk 30.


The relative positioning of the forming wheels 8 and 10 is carried out so that the teeth of the two forming wheels 8 and 10 mesh together as shown in FIG. 1.


The forming wheels 8 and 10 also comprise means 18 for splitting the metal sheet 2. In this instance, the splitting means 18 are made in the form of one or more blades carried, on specific disks called splitting disks 22, by each of the forming wheels 8 and 10. In FIG. 1, two splitting disks 22 are shown on each forming wheel.


These splitting disks 22 make it possible to split the metal sheet 2 into at least two strips of width l. It will be noted that the splitting of the metal sheet 2 into two strips of width l makes it possible to cut the metal sheet 2 in the direction of its length or else in other words in the direction of the arrow F shown in FIG. 1; this operation is carried out over the whole of the fin 4. For this, the splitting disks 22 are placed on each forming wheel at a height equal to the width l of the fin 4.


The splitting disks 22 have a profile similar to the deformation disks 30 of the forming wheels 8 and 10.


The splitting disks 22 belonging to one and the same forming wheel have different diameters. In the embodiment shown in FIG. 2, the diameters of the splitting disks 22A1 and 22D2 (belonging respectively to the forming wheels 8 and 10) have a diameter that is larger than that of the splitting disks 22B1 and 22C1 (belonging respectively to the forming wheels 8 and 10). For ease of understanding, only the splitting disks 22 of the forming wheels 8 and 10 have been shown in FIG. 2.


During the application of the method, the splitting disk 22A1 of the forming wheel 8 comes into contact with the splitting disk 22B1 of the forming wheel 10. In the same manner, during the application of the method, the splitting disk 22C2 of the forming wheel 8 comes into contact with the splitting disk 22D2 of the forming wheel 10.


The splitting disks 22 comprise, on their circumference, means designed to shear the metal sheet 2 into two strips 4 of width l. Therefore, the splitting is carried out without removal of material and therefore without fall of material. In FIG. 1, the splitting disks 22 have been simplified and accentuated in their dimension in order to make comprehension easier.


During the manufacture of the fin 4 according to the method of the present invention and as shown in FIG. 1, the forming wheels 8 and 10 of the device rotate in opposite directions about their respective axis of rotation A1 and A2 in the direction S1 for the forming wheel 8 and in the direction S2 for the forming wheel 10.


During the manufacture of the fins 4, the peaks 14 of the deformation means 12 of one forming wheel fit into the hollow 16 of the deformation means 12 of the second forming wheel. This allows the formation of corrugations 20 consisting of flat zones 20-1 and 20-2 and folded zones 20-3 forming an elbow.


At the same time as the formation of these corrugations 20, the splitting means 18 split or shear the metal sheet 2 along its longitudinal axis into two strips of width l in order to obtain said two strips of width l.


In this embodiment, the metal sheet is simultaneously:

    • folded with the aid of the alternation of peaks 14 and hollow 16,
    • split with the aid of splitting means 18 provided on the splitting disks 22, and
    • transverse slots forming flow deflectors are formed with the aid of sharp edges.


Therefore, the two fins 4 are formed and separated simultaneously by the forming wheels 8 and 10.


The invention is not limited to the embodiments described above, only as examples, but it covers all the variants that those skilled in the art can envisage in the context of the following claims.

Claims
  • 1. A method for manufacturing a fin (4), for a heat exchanger, said fin (4) having a width l and comprising corrugations (20), said method comprising at least one step of splitting a metal sheet (2) into at least two strips of width l and a step of folding the strips of width l in order to obtain the corrugations (20), characterized in that said steps of splitting and of folding said metal sheet (2) take place simultaneously using a device comprising at least two wheels (8; 10) each wheel having a means (12) for deforming the metal sheet (2) and a means (18) for splitting the metal sheet (2).
  • 2. The manufacturing method as claimed claim 1 further comprising a step of forming transverse slots at a distance from one another in the strips of width l.
  • 3. The method as claimed in claim 2, wherein said step of forming the transverse slots takes place simultaneously with said steps of splitting and of folding the strips of width l.
  • 4. The method as claimed in claim 3, further comprising a step of cutting the fin (4) of width l to a predetermined length.
  • 5. A device for manufacturing a fin (4), the fin (4) having a width l and comprising corrugations (20), said device comprising at least two wheels (8; 10) each furnished with means (12) for deforming a metal sheet (2) and with means (18) for splitting the metal sheet (2) into at least two strips of width l to obtain the corrugations (20) of the fin (4).
  • 6. The device as claimed in claim 5, wherein said deformation means (12) of said first wheel (8) fit into said deformation means (12) of said second wheel (10).
  • 7. The device as claimed in claim 5, wherein said splitting means (18) are blades carried by disks of each of said wheels (8; 10).
  • 8. The device as claimed in claim 6, wherein said splitting means (18) are blades carried by disks of each of said wheels (8; 10).
  • 9. A device for manufacturing a fin (4), the fin (4) having a width l and comprising corrugations (20), said device comprising at least two wheels (8; 10) each furnished with means (12) for deforming a metal sheet (2) and with means (18) for splitting said metal sheet (2) into at least two strips of width l to obtain the corrugations (20) of the fin (4), wherein said metal sheet (2) is in contact with said means (18) and is split to obtain said two strips of width l.
  • 10. The device as claimed in claim 9, wherein said deformation means (12) of said first wheel (8) fit into said deformation means (12) of said second wheel (10).
  • 11. The device as claimed in claim 9, wherein said splitting means (18) are blades carried by disks of each of said wheels (8; 10).
  • 12. The device as claimed in claim 10, wherein said splitting means (18) are blades carried by disks of each of said wheels (8; 10).
Priority Claims (2)
Number Date Country Kind
08 01051 Feb 2008 FR national
PCT/EP2009/052404 Feb 2009 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2009/052404 2/27/2009 WO 00 11/15/2010
Publishing Document Publishing Date Country Kind
WO2009/106630 9/3/2009 WO A
US Referenced Citations (20)
Number Name Date Kind
1365258 Lundin Jan 1921 A
1450351 Beran Apr 1923 A
2071584 Shippy Feb 1937 A
3167046 Modine Jan 1965 A
3318128 Rhodes May 1967 A
3998600 Wallis Dec 1976 A
4067219 Bianchi Jan 1978 A
4507948 Wallis Apr 1985 A
4685318 Ueda et al. Aug 1987 A
4748838 Cornelison Jun 1988 A
4838065 Wallis Jun 1989 A
4956987 Hara et al. Sep 1990 A
5261262 Wallis Nov 1993 A
5454286 Takaha Oct 1995 A
5732460 Paternoster et al. Mar 1998 A
5732584 Prater et al. Mar 1998 A
5983692 Bruck Nov 1999 A
6564607 Nozaki et al. May 2003 B2
6594896 Morihira et al. Jul 2003 B2
7866042 Kolb Jan 2011 B2
Foreign Referenced Citations (3)
Number Date Country
58041636 Mar 1983 JP
11-147149 Jun 1999 JP
WO 00-35690 Jun 2000 WO
Non-Patent Literature Citations (3)
Entry
English language abstract for JP 58041636 extracted from espacenet.com database, dated Jan. 10, 2011, 8 pages.
English language translation and abstract for JP 11-147149 extracted from PAJ database, dated Jan. 14, 2011.
PCT International Search Report for PCT/EP2009/052404, dated Apr. 23, 2009, 4 pages.
Related Publications (1)
Number Date Country
20110041338 A1 Feb 2011 US