1. Field of Invention
The present invention relates to a method for making a nanometer enhanced thermo-durable thermosetting polyester material and, more particularly, to a method for making a nanometer enhanced thermo-durable thermosetting polyester material that exhibits improved heat resistance, molecular chain rigidity, cross-link density, thermal stability and mechanical properties.
2. Related Prior Art
High-performance resins such as bismaleimide, polyimide and epoxy are used in the aerospace industry. They exhibit excellent heat resistance and mechanical properties. They however require long periods for curing and are expensive.
Thermosetting unsaturated polyester is the most popular resin in the composite industry. The market value of thermosetting unsaturated polyester is about 66% of the market value of all resins in the composite industry. Thermosetting unsaturated polyester exhibits excellent workability, corrosion resistance, chemical resistance, mechanical properties, hydrolysis resistance, and lightweight. Thermosetting unsaturated polyester requires a short period of time for curing and is inexpensive in comparison with the high-performance resins used in the aerospace industry.
Hence, thermosetting unsaturated polyester is often used in yachts, boats, chemical tanks, industrial pipes and storage towers where heat resistance is not the primary concern. For example, in a yacht, hydrolysis resistance and moisture isolation are important while the operation temperature does not exceed 100° C.
Thermosetting unsaturated polyester is not good for industrial usages such as chemical absorption towers and high-temperature chimneys where materials must stand 160° C. Moreover, thermosetting unsaturated polyester is not good for high-temperature molding machines and heating appliances that require heat resistance, oxidization resistance, thermal insulation and low costs. The high-temperature molding machines may be hot presses, plastic injection molding machines, sealing and packing machines and wood presses. The heating appliances may be heaters, stoves, ovens and drivers.
In high-temperature machines, materials must exhibit excellent thermal insulation, strength, corrosion resistance, thermal resistance, heat resistance, durability and workability for protecting parts, simplifying processes, reducing the consumption of energy, and protecting the safety of people. Moreover, the materials must be inexpensive.
The present invention is therefore intended to obviate or at least alleviate the problems encountered in prior art.
It is the primary objective of the present invention to provide a method for making a nanometer enhanced thermo-durable thermosetting polyester material that exhibits improved heat resistance, molecular chain rigidity, cross-link density, thermal stability and mechanical properties.
To achieve the foregoing objectives, the method includes the step of making prepolymeric viscous liquid from a first polyester prepolymer, a functional polyester oligomer, a second polyester prepolymer and a polymerizable monomer. The first polyester prepolymer includes an unsaturated vinyl group of low molecular weight. The functional polyester oligomer includes an unsaturated vinyl group. The second polyester prepolymer includes a layered silicate unsaturated vinyl group. The polymerizable monomer includes the vinyl group. Then, the prepolymeric viscous liquid is cured by using a catalyst and an accelerator, thus providing a highly cross-linked three-dimensional thermosetting polyester/layered silicate nanometer material.
In another aspect, the layered silicate is an organically modified layered silicate.
In another aspect, the layered silicate is an evenly distributed intercalated/exfoliated layered silicate made by in situ intercalation polymerization.
In another aspect, the weight of the layered silicate 1% to 7.5% of the weight of the second polyester prepolymer.
In another aspect, the layered silicate includes layers and spacings between the layers, wherein the thickness of the spacings is 3 to 100 nanometers.
In another aspect, the second polyester prepolymer includes the bisphenol A group and/or the phenol group.
In another aspect, the polymerizable monomer includes styrene, vinyltoluene and/or triallyl cyanurate.
In another aspect, the prepolymeric viscous liquid is made with viscosity of 200 cps to 1800 cps and more preferably 300 cps to 700 cps.
In another aspect, the thermosetting polyester prepolymer is cured at the room temperature or high-temperature.
In another aspect, the thermosetting polyester material is made with a glass transition temperature of at least 160° C.
Other objectives, advantages and features of the present invention will be apparent from the following description referring to the attached drawings.
The present invention will be described via detailed illustration of the preferred embodiment referring to the drawings wherein:
Referring to
In the first subroutine, prepolymeric viscous liquid 10 is made from a first polyester prepolymer 11, a functional polyester oligomer 12, a second polyester prepolymer 13 and a polymerizable monomer 14. The viscosity of the prepolymeric viscous liquid 10 is preferably 200 cps to 1800 cps and more preferably 300 cps to 700 cps.
The first polyester prepolymer 11 includes an unsaturated vinyl group of low molecular weight.
The functional polyester oligomer 12 includes an unsaturated vinyl group.
The second polyester prepolymer 13 includes a layered silicate unsaturated vinyl group. The layered silicate is an organically modified layered silicate. The layered silicate unsaturated vinyl group includes evenly distributed intercalated/exfoliated layers of silicates made by in situ intercalation polymerization. The weight of the layered silicate is about 1% to 7.5% of the weight of the second polyester prepolymer 13. The spacing between any two adjacent layers of the layered silicate is 3 to 100 nanometers. The second polyester prepolymer 13 includes the bisphenol A group and/or the phenol group.
The polymerizable monomer 14 includes the vinyl group. The polymerizable monomer 14 includes styrene, vinyltoluene and/or triallyl cyanurate.
In the second subroutine, a highly cross-linked three-dimensional thermosetting polyester/layered silicate nanometer material 1 is made by curing the prepolymeric viscous liquid 10 with a catalyst 15 and an accelerator 16. The thermosetting polyester r/layered silicate nanometer material 1 may be cured at the room temperature or high temperature. The glass transition temperature of the thermosetting polyester/layered silicate nanometer material 1 is higher than 160° C.
As nanometer enhanced and chemically modified, the thermosetting polyester/layered silicate nanometer material 1 exhibits the following advantageous features:
The present invention has been described via the detailed illustration of the preferred embodiment. Those skilled in the art can derive variations from the preferred embodiment without departing from the scope of the present invention. Therefore, the preferred embodiment shall not limit the scope of the present invention defined in the claims.