The present invention concerns a method for making a textile coating, and such a textile coating, which may in particular be a floor covering, a wall covering or a trim carpet for the passenger compartment of a vehicle.
It is known to make textile coverings from a needled fibrous web and in particular from a velour fibrous web, which is a web that has been needled in such a manner that a part of its thickness is formed essentially of joined loops. The fibres of such a loop originate in an area located beneath the loops and in which the fibres are intertwined and thus partially interlinked.
When manufacturing the coating, the back of the velour web is impregnated with an aqueous solution of latex. Then the whole is subjected to drying, the function of which is to remove the water from this solution until the latex crosslinks, but which involves the drawbacks of requiring sizeable equipment and of being costly.
Once drying has been carried out, the latex forms bridges which link the fibres of the web with one another, in the area located beneath the loops.
Latex is non-thermoplastic and its presence in the textile coating is detrimental to recycling of the latter.
Using a latex solution involves other drawbacks than that of requiring a drying phase. In particular, it entails the pollution of considerable quantities of water the decontamination of which requires a dedicated purification installation, which entails substantial investments and maintenance costs.
For example, it is also known from document DE 197 37 864 to make a textile coating by coating the underside of a web of fibres with a coating which can be deposited in molten form before subsequently solidifying by cooling. This coating may also come from a powder or a heat-meltable film which is not caused to melt until it has been deposited on the underside of the web. In both cases, coating on the underside of the web does not allow satisfactory mechanical properties to be obtained, in particular in terms of dimensional stability and abrasion resistance of the textile coating.
At least one object of the invention is to simplify the manufacture of a textile coating, without it entailing a deterioration of certain mechanical properties of said textile coating.
According to the invention, this object is achieved by means of a method for making a textile coating from a web of fibres comprising a rear face, a first area, a second area and a front face, the first area being a cohesion area in which the fibres of the web are integrated into a tight entanglement holding these fibres and which is located on only a portion of the thickness of the web, the second area extending over another portion of the thickness of the web until said front face. This method comprises stages in which:
It was found, surprisingly, that the alternating electric field concentrates the powdery binder in the cohesion area. Rather it would have been expected that the alternating electric field would disperse the powdery binder over the entire thickness of the textile coating, to the extent that it is known, for example, from document WO 99/22920, that a similar alternating electric field could be utilized effectively to perform homogeneous impregnation of a fibrous layer with powder.
Now it is a desideratum that the upper portion of the coating, that is, the second area, should contain as little binder as possible.
The method described above does not employ the formation of any solution and no drying is required. It may be implemented by means of a significantly smaller-sized and less costly installation than an installation handling a latex solution.
In addition, the above-defined method has the advantage of offering flexibility with respect to the quantity of binder in the textile coating and the location of this binder. This location may be altered by changing the face on which the powdery binder is deposited and/or by adjusting the proportion of this powdery binder deposited on one face of the web, compared with the quantity of powdery binder deposited on the other face of the web. The location of the binder within the web also depends on the residence time of the web between the electrodes, the setting parameters of the field produced by these electrodes, the specific characteristics of the powder and in particular on its granulometry, and on the denier of the web fibres and the density of said web.
Advantageously, the heat-meltable binder is more specifically a thermoplastic binder. It may also be of a different nature. For example, the heat-meltable binder may be a binder that is meltable at a first temperature and thermosettable at a second temperature higher than this first temperature. For example, the heat-meltable binder can be a polyethylene, a polypropylene, a polyester, an epoxy resin or a mixture of said substances.
The fibres of the web are advantageously made of a polymer, such as a polypropylene, a polyester, a polyamide or a mixture of said substances. They may also be cellulose fibres. The web can also comprise different kinds of mixed fibres.
Advantageously, between the stages a) and c), the method comprises a stage in which:
Advantageously, between the stages a) and c), the method comprises a stage in which:
Advantageously, the powdery binder is a mixture of powders of different chemical compositions.
Advantageously, the method comprises a stage in which the rear face is coated with a coating containing fillers.
A further object of the invention is a textile coating comprising a web made of fibres and which comprises a rear face, a first area, a second area and a front face, the first area being a cohesion area in which the web fibres are integrated into a tight entanglement holding these fibres and which is located on only a portion of the thickness of the web, while the second area extends over another portion of the thickness of the web, above said first area, until said front face, a heat-meltable binder links fibres of the web with each other and is concentrated in the first area which comprises a core and a surface area linking said core to the rear face of the web, the proportion of heat-meltable binder in relation to the fibres being lower in the surface area than in the core.
It is thought that prior to the invention of the method defined above, it was not known how to obtain a lower proportion of heat-meltable binder in the surface area of the first area, in relation to the proportion of binder in the core of said first area or, at least, how to obtain it in a manner that is simple and economical enough not to be impractical.
Since the proportion of heat-meltable binder in relation to the fibres is lower in the surface area than in the core, a smaller quantity of binder can be employed without significantly reducing the robustness of the textile coating, which has the advantage of resulting in savings. In addition, a sub-layer such as a coating can cover the lower face of the web. It is easier to make it adhere to the rear face of the web if this rear face contains little binder. In the absence of a sub-layer, the rear face of the web also forms the rear face of the coating.
The heat-meltable binder is advantageous in that it can be melted again by means of further heating of the textile coating, after which this coating can be shaped by compression between two forming blocks.
Advantageously, the textile coating results from the implementation of a method as defined above.
The invention will be clearly understood by reading the description that follows, which is provided solely by way of example and with reference to the attached drawings, which include:
As can be seen from
In the example shown, the web 3 comprises loops 9 on its face 8A, since it is a velour needled web. However, the web 3 may exhibit ordinary needling, that is, it may not be velour.
At the entry point to installation 1, a roller 10 of web 3 unreels towards an impregnation device 11, in the direction symbolized by the arrow F in
The impregnation device 11 comprises two opposite electrodes 14 and 15 which are generally plane and parallel to one another, between which passes the web 3 bearing the powdery binder 12. These electrodes 14 and 15 generate between them an alternating electric field which is applied to the web 3 and the powder of binder 12 at the same time. This field causes the powdery binder 12 to penetrate into the thickness of the web 3, including into its entanglement 5. It was also found, surprisingly, that the alternating electric field produced between the electrodes 14 and 15 concentrates the powdery binder 12 at said entanglement 5 in such a manner that, at portion 7 of the web 3, the fibres 4 contain virtually no powdery binder 12, which is a desideratum.
Likewise preferably, the electrodes are plane and parallel to each other. However, in some cases, it may be advantageous to use electrodes having a different shape and/or which are not parallel to one another. These electrodes may in particular be like those described in the document WO 2005/038123.
At the exit point of the impregnation device 11, an extractor 16 subjects the face 8A to extraction, that is, a cleaning operation intended to remove any grains of binder 12 located in portion 7 of the web 3. This aspiration may optionally be eliminated by being replaced by brushing. The structure of the web 3 immediately after the extractor 16 can be seen in
Downstream of the extractor 16 is located a hot-air oven 17, in which a supply of heat causes the binder 12 to melt. Thereupon the web 3 passes between two press rollers 20.
Once it has passed through the press rollers 20, the web 3 is subjected to a cooling air stream 21 expelled from one or a plurality of nozzles 22 and which causes solidification of the binder 12. The rollers 20 may also be cooled and contribute to solidification of the binder 12. They can even cause said solidification without the presence of the cooling air stream 21. It is also possible to allow cooling of the binder 12 to take place on its own.
After solidification of the binder 12, the web 3 forms a textile coating, which is cut into several carpets 2 by a knife 23 in the example shown.
The structure of a carpet 2 can be seen in
The low proportion of binder 12 in the surface area 26 can be ascertained visually on the lower face 8B. It can also be verified by measurements. These measurements can be based on a comparison by thermal analysis of the melt enthalpy of the fibres 4 alone and the melt enthalpy of the sample to be evaluated, for a melting of only the fibres 4 present in this sample, excluding its binder 12. From this comparison, the proportion by weight of fibres 4 in the sample is deduced and therefore that of binder 12. The sample is prepared by grinding carried out in such a manner as to leave only that which has to be measured and to remove the remainder. For example, the sample prepared to measure the quantity of binder 12 in the surface area 26 results from a removal by grinding of the portion 7 and the core 25.
A heat-meltable binder 12 can be chosen that is compatible with the fibres of the carpet so that the carpet 2 can be recycled.
Several examples of carpet 2 made by using the method described above are proposed in what follows.
In this example, the web 3 was a velour needled product weighing 600 g/m2 and having a thickness of approximately 6 mm. It consisted of a mixture of fibres 4 of 6.5 dtex, 17 dtex and 150 dtex, made of polypropylene and initially containing no binder.
The binder 12 consisted of high-density polyethylene, which was sprinkled at the rate of 90 g/m2 on the web 3. Before being incorporated in this web, it was present in the form of a powder having a granulometry of 0 μm to 80 μm and is commercialized by the company ABIFOR (Wutöschingen—GERMANY) under the reference 1300/20.
Impregnation of the web 3 by the powdery binder 12 was carried out in the device 11 fitted with flat electrodes 14 and 15. The alternating electric field produced between these electrodes 14 and 15 had a value of 2 kV/mm and a frequency of 50 Hz. The web 3 containing the powdery binder 12 had an alternating electric field applied to it for 20 sec. It was then placed for more than 2 min. in the oven 17 set at a temperature higher than the melting temperature of the binder and lower than the melting temperature of the fibres.
A carpet 2 obtained according to this example 1 was subjected to the Lisson test as defined by the EN 1963 standard from the year 1997. Following this test, a determination by visual evaluation of the level of defibration of carpet 2 was performed and gave a value of ⅗ in the machine direction, that is, in the direction of arrow F in
Following the Lisson test, the weight loss of the carpet 2 was also determined and gave a value of 58.7 g/m2 in the machine direction and a value of 60.1 g/m2 in the transverse direction.
The carpet 2 had an average thickness of 6 mm. The proportion of binder 12 over its entire thickness was evaluated at 29.5% by weight by the above-mentioned method and by employing measurements of melt enthalpy. The proportion of binder 12 in the last millimetre before the face 8B, that is, on the back of carpet 2, generally at its surface area 26, was evaluated at 16.9% by weight by the same method. It could be deduced from this that the proportion of binder 12 in the surface area 26 was lower than that in the core 25. This should be compared with the same measurements made on a second carpet, manufactured from the same web but utilizing the prior art method, that is, by using a latex solution.
The proportion of latex in the entire thickness of this second carpet was evaluated at 26.7% by weight by the above-mentioned method and by employing measurements of melt enthalpy. The proportion of latex in the last millimetre of the second carpet before its lower face, that is, on the back of this second carpet, was evaluated at 35.0% by weight by the same method.
In this example the same web 3 and the same binder 12 were used as in example 1.
This binder 12 was sprinkled at the rate of 120 g/m2 on the web 3.
Impregnation of the web 3 by the powdery binder 12 was carried out in the device 11 fitted with flat electrodes 14 and 15. The alternating electric field produced between these electrodes 14 and 15 had a value of 2 kV/mm and a frequency of 50 Hz. The web 3 containing the powdery binder 12 had an alternating electric field applied to it for 20 sec. It was then placed for more than 2 min. in the oven 17 set at a temperature higher than the melting temperature of the binder and lower than the melting temperature of the fibres.
A carpet 2 obtained according to this example 3 was subjected to the Lisson test as defined by the EN 1963 standard from the year 1997. Following this test, a determination by visual evaluation of the level of defibration of carpet 2 was performed and gave a value of ⅘ in the machine direction, and a value of ⅗ in the transverse direction.
Following the Lisson test, the weight loss of the carpet 2 was also determined and gave a value of 36.8 g/m2 in the machine direction and a value of 54.3 g/m2 in the transverse direction.
In this example, the web 3 was a velour needled non-woven, weighing 550 g/m2. Its fibres 4, which initially did not contain any binder, were made of polyester and had a denier of 6.7 dtex.
The binder 12 was an epoxy resin, which was sprinkled at the rate of 150 g/m2 on the web 3. Before being incorporated in this web 3, it was present in the form of a powder having a granulometry of 0 μm to 100 μm and is commercialized by the company BAKELITE (GERMANY) under the reference 6171TP.
Impregnation of the web 3 by the powdery binder 12 was carried out in the device 11 fitted with flat electrodes 14 and 15. The alternating electric field produced between these electrodes 14 and 15 had a value of 3 kV/mm and a frequency of 50 Hz. The web 3 containing the powdery binder 12 had an alternating electric field applied to it for 20 sec. It was then placed for more than 2 min. in the oven 17 set at a temperature higher than the melting temperature of the binder and lower than the melting temperature of the fibres.
A carpet 2 obtained according to this example 2 was subjected to the Taber test. After this test, a determination by visual evaluation of the abrasion resistance of the carpet 2 was performed and gave a value of ¾.
In this example the same web 3 was used as in example 3.
The binder 12 was sprinkled at the rate of 140 g/m2 on the web 3. Before it was incorporated in this web 3, it was present in the form of a mixture containing 20% by weight of a powder commercialized by the company BAKELITE (GERMANY) under the reference 6171TP and 80% by weight of a polypropylene powder having a melt flow index (MFI) equal to 120 and a granulometry of 0 μm to 200 μm. The “6171TP” powder had a granulometry of 0 μm to 100 μm.
Impregnation of the web 3 by the powdery binder 12 was carried out in the device 11 fitted with flat electrodes 14 and 15. The alternating electric field produced between these electrodes 14 and 15 had a value of 3 kV/mm and a frequency of 50 Hz. The web 3 containing the powdery binder 12 had an alternating electric field applied to it for 20 sec. It was then placed for more than 2 min. in the oven 17 set at a temperature higher than the melting temperature of the binder and lower than the melting temperature of the fibres.
Number | Date | Country | Kind |
---|---|---|---|
0755713 | Jun 2007 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR08/50963 | 5/30/2008 | WO | 00 | 12/3/2009 |