This invention relates to an improved conductively coated transparent substrate as used in an interactive touch information display such as a transparent digitizer, near field imaging touch screen, electromagnetic touch screen, or an electrostatic touch screen. These products typically utilize a transparent conductive thin film on a rigid glass substrate and with the transparent conductor deposited in a specific pattern as required by product design and with a region coated with a transparent conductor immediately adjacent to a region uncoated with a transparent conductor. This results in an interactive device consisting of areas A and A′ of non-coated substrate contrasting with areas B, B′, B″, and B′″ of conductively coated substrate as shown in
The present invention contemplates the coating of a transparent metal oxide material using conventional methods known in the wet chemical coating art such as spin coating, roll coating, meniscus coating, dip coating, spray coating, or angle dependent dip coating on a discrete patterned conductively coated glass substrate as used in a transparent interactive, input device such as a transparent digitizer, or a near field imaging touch screen, or an electromagnetic touch screen, or an electrostatic touch screen. Physical vapor deposition techniques, such as coating by sputtering or coating by evaporation, are also applicable coating methods. When the additional outermost transparent layer of, for example, a metal oxide such gas silicon dioxide, is disposed on the substrate on top of the outermost layer of the patterned transparent conductively coating, visible contrast between the non-conductively coated areas of the coated panel and the conductively coated areas of the coated panel is reduced and overall light transmission is increased. It is most preferred to use the wet chemical coating method known to those skilled in the art as dip coating, or angle dependent dip coating, to establish a coating simultaneously on both sides of the delineated conductively coated substrate.
In one form, the invention is a reduced contrast, increased transmission conductively coated panel comprising a substrate having a first surface and a second surface, a transparent, conductive layer on at least one surface of the substrate, the conductive layer being in a predetermined pattern such that there is at least one area having a conductive layer thereon and a second area without a conductive layer on said one substrate surface. A transparent layer of metal oxide overlies both areas of the substrate surface such that visible contrast between the areas is reduced and light transmission through the coated panel is increased and wherein the coated panel is adapted for use in an interactive device.
In other aspects, the transparent substrate may be glass or plastic, the transparent, conductive layer may be one of indium tin oxide, doped tin oxide or doped zinc oxide, while the transparent metal oxide layer may be silicon dioxide.
In yet other aspects, the second surface of the substrate may also include a transparent, conductive layer in a predetermined pattern with at least one conductively coated area and a second area without a conductive coating, and a transparent metal oxide layer, for example silicon dioxide, overlying those areas.
In yet a further aspect of the invention, a transparent interactive input device comprises an electro-optic display for displaying information when electricity is applied thereto and a conductively coated panel optically bonded to the electro-optic display. The panel includes a substrate and a transparent, conductive layer on at least one surface of the substrate, the conductive layer, being in a predetermined pattern such that there is at least one area having a conductive layer thereon and a second area without a conductive layer. A transparent layer of metal oxide overlies both areas whereby visible contrast between the areas is reduced and light transmission through the coated panel is increased.
The present invention also includes a method for making an interactive information device comprising forming a reduced contrast, increased light transmitting, conductively coated panel and optically bonding the conductively coated panel to an electro-optic display for displaying information when electricity is applied thereto. The conductively coated panel is formed by providing a transparent substrate having first and second surfaces, applying a transparent conductive layer on at least one surface of the substrate in a predetermined pattern such that there is at least one area having a conductive layer thereon and a second area without a conductive layer on that one substrate surface, and applying a transparent layer of metal oxide overlying the one and second areas of that one substrate surface whereby visible contrast between the one area and second area is reduced and light transmission through the coated panel is increased.
In other aspects, the method includes applying a transparent, conductive layer on the other of the first and second surfaces of the substrate in a predetermined pattern such that there is at least one area having a conductive layer thereon and a second area without a conductive layer and applying a transparent layer of metal oxide overlying the one and second areas of the other substrate surface.
The transparent metal oxide layers may be applied by physical vapor, deposition coating such as sputtering or evaporation coating white the transparent metal oxide layer or layers may be applied by a wet chemical deposition process such as spin coating, roll coating, meniscus coating, dip coating, spray coating or angle dependent dip coating. The dip coating or angle dependent dip coating includes dip coating the substrate having the transparent, conductive layers thereon in a precursor solution for silicon dioxide such that the transparent layers of metal oxide are applied to both surfaces of the substrate simultaneously. The method also includes applying a conductive electrode pattern over each of the respective surfaces of the substrate after application of the transparent conductive layers and prior to application of the transparent metal oxide layers. The transparent conductive layers and conductive electrode patterns may be cured by baking at a predetermined temperature for a predetermined time.
The present invention therefore provides an improved conductively coated panel for use in transparent, interactive input devices which both reduces visible contrast between areas coated with conductive layers and areas not coated with conductive layers while increasing light transmission through the coated panel. The coated panels are, therefore, especially useful in interactive devices such as with electro-optic displays for displaying information when electricity is applied thereto.
These and other objects, advantages, purposes and features of the invention will become more apparent from a study of the following description taken in conjunction with the drawings.
More specifically, and as shown in
A rigid plastic substrate can be formed by extrusion, casting or injection molding. When injection molding, is used such as when forming a substrate from a cyclic olefin copolymer (COC), a non-planar curved (spherical or multiradius) part can be formed, optionally with at least one, surface roughened (such as by roughening/patterning a surface of the tool cavity used for injection molding) so as to have a light-diffusing, anti-glare property.
A transparent, plastic substrate such as one formed from cyclic olefin polymer resin can be used to form a rigid panel or back plate for use in a resistive membrane touch device where the cyclic olefin panel functions as a transparent back plate for a flexible, conductive, transparent touch member assembly as is also described in U.S. patent application Ser. No. 09/946,228, filed Sep. 5, 2001, incorporated by reference above.
A transparent, conductive, patterned thin film (such as indium tin oxide or doped tin oxide, such as Sb or F doped tin oxide, or doped zinc oxide) 20 is deposited in a predetermined pattern with coated and non-coated areas on the first surface 12 of substrate 10. Preferably, a second transparent, conductive, patterned thin film 30 (such as indium tin oxide or doped tin oxide, such as Sb or F doped tin oxide, or doped zinc oxide) is also deposited on the second surface 14 of substrate 10 also in a predetermined pattern with coated and non-coated areas. A first surface outermost film 40 comprises a transparent silicon dioxide film deposited on transparent conductive patterned film 20. The preferred range of thickness of the silicon dioxide (SiO2) film is about 600 to about 1400 Angstroms thick, most preferred about 800 to about 1200 angstroms thick. Silicon dioxide film 40 is at least about 600 Angstroms thick in those areas overlying conductive film 20. The second surface outermost film 50 also preferably comprises a transparent silicon dioxide film deposited on transparent conductive patterned film 30 and may have the same or differing thickness as film 40. Layers 40 and 50 have a refractive index at the Sodium D line of at least about 2.00 and less than about 2.2. Although metal oxides are preferred, the present invention encompasses use of non-metal oxide layers such as boron oxide or the like.
Other metal oxide materials may also be used for layers 40 and 50 including tantalum oxide, zirconium oxide, titanium dioxide, tungsten oxide, or similar transition metal and non-transition metal oxides. Such materials would be used in thicknesses within the range of about 100 to about 50,000 Angstroms. For example, for a metal oxide, layers 40, 50 preferably are at least about 500 Angstroms to about 10,000 Angstroms thick in those areas overlying conductive films 20 or 30.
Multilayer stack 20 reduces glare from light incident, thereon for direction X and multilayer stack 30 reduces glare from light incident thereon for direction Y. Silicon dioxide (SiO2) layers 40 and 50 increase visible light transmission through panel 60 (that typically comprises a transparent glass substrate) as compared to uncoated glass by at least about 1.5% T; and preferably by at least about 4% T; and most preferably by at least about 6% T.
Light transmission through improved reduced-glare conductive coated panel 60 is at least about 85% T; more preferably at least about 90% T, and most preferably at least about 95% T (transmission measured using an integrating sphere across the visible spectrum). Optical inhomogeneity is reduced between the transparent conductively coated regions and the non-coated regions rendering these delineation regions essentially visually indistinguishable by a viewer so that there is no substantial contrast apparent when viewed in reflected light.
In some forms of the invention, it may be useful to incorporate a reduced glare, conductively coated panel having increased visible light transmission and suitable for use as a touch screen, digitizer panel or substrate in an information display and incorporating one or more thin film interference layers forming a thin film stack on opposite surfaces of a substrate such as that described herein and a transparent electrically conductive coating on the outer most layer of one or both of the thin film stacks, such as described in U.S. patent application Ser. No. 09/883,654, filed Jun. 18, 2001, now U.S. Pat. No. 6,878,240, issued Sep. 7, 2004, entitled ENHANCED LIGHT TRANSMISSION CONDUCTIVE COATED TRANSPARENT SUBSTRATE AND METHOD FOR MAKING SAME; the disclosure of which is hereby incorporated, by reference herein.
In some forms of the present invention, it may also be useful to incorporate a flexible, transparent, conductively coated layer with a rigid, transparent, conductively coated substrate suck as that described herein to form an interactive information device and to include spacer members or dots as described in U.S. patent application Ser. No. 09/954,139, filed Sep. 17, 2001, now U.S. Pat. No. 6,627,918, issued. Sep. 30, 2003, entitled SPACER ELEMENTS FOR INTERACTIVE INFORMATION DEVICES AND METHOD FOR MAKING SAME, the disclosure of which is incorporated by reference herein as set forth above. Such an assembly includes an improved process and materials for producing uniformly dispersed, consistent, durable, essentially non-visible, fixed substrate-interpane-spacer elements (for example “spacer dots”) for spacing opposing conductive surfaces of the flexible top sheet and rigid bottom sheet or substrate of such an interactive information device.
Preferably, at least layers 40 and 50 are deposited by wet chemical deposition (such as disclosed in U.S. Pat. No. 5,725,957. Varaprasad et al. etc or such as disclosed by U.S. Pat. Nos. 5,900,275; 5,838,483; 5,604,626; 5,525,264; and 5,277,986 all commonly assigned to Donnelly Corporation of Holland, Mich., which are all incorporated by reference herein in their entireties). For example, a preferred precursor solution comprises about 18.75% tetraethylorthosilicate, about 2.23% acetic anhydride, about 3.63% water, about 0.079% phosphoric acid (85% acid in aqueous solution), about 0.91% 2,4-pentanedione, about 1.24% 1-pentanol, about 19.38% ethyl acetate, about 15% ethanol, about 17.5% methanol and about 21.25% acetone (all component concentrations are expressed as weight percentages of the total weight of the solution). This equates to a concentration of tetraethylorthosilicate precursor, expressed as equivalents of silica, of about 5.4%.
The preferred process, and as shown in
While several forms of the invention have been shown and described, other forms will now be apparent to those skilled in the art. Therefore, it will be understood that the embodiments shown in the drawings and described above are merely for illustrative purposes, and are not intended to limit the scope of the invention, which is defined by the claims which follow.
This application is a continuation of Prior application Ser. No. 12/200,159, filed on Aug. 28, 2008, which is a division of U.S. patent application Ser. No. 10/744,522, filed on Dec. 23, 2003, now under appeal, which is a division of U.S. patent application. Ser. No. 09/974,209, filed on Oct. 10, 2001, now abandoned, which claims priority from U.S. Provisional. Patent Application Ser. No. 60/239,788, filed Oct. 12, 20.00, the disclosures of which are hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
60239788 | Oct 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10744522 | Dec 2003 | US |
Child | 12200159 | US | |
Parent | 09974209 | Oct 2001 | US |
Child | 10744522 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12200159 | Aug 2008 | US |
Child | 13154390 | US |