The present invention relates to a method for making assembled textile products, in particular jackets, trousers, men's suits, women's dresses or other textile products assembled from a plurality of fabric parts. The invention further relates to an assembled textile product obtained with this method. It is known about several types of assembled textile products, i.e. complex textile products made by suitably assembling a plurality of suitably shaped fabric parts. These fabric parts are obtained first of all by cutting one or more fabrics so as to make suitable shapes, e.g. by using paper patterns or cutting templates. The fabric parts thus cut are then assembled in a known manner so as to make the desired textile products. The fabrics used for making these assembled textile products must have specific properties, i.e. relating to stability and stiffness, so as to be able to be processed and to give the finished product the desired appearance and technical features. These fabrics include e.g. jersey, velvet, brocade etc. and are manufactured with materials including e.g. cotton, wool, linen, silk, synthetic materials etc. Traditionally, these fabrics are made by specialized manufacturers or weavers using rectilinear knitting machines such as e.g. looms, for manufacturing weft and warp fabric, generally having a high structural stiffness, or circular machines with large diameter, above 24 inches, typically of double needlebed type and configured for making several lengths of “structured” fabrics, having a sufficiently high structural stability and stiffness though being knitted fabrics, which are suitable for manufacturing large amounts of fabric.
Known processes for making assembled knitted products, in particular jackets, trousers, men's suits, women's dresses and the like, have some drawbacks. A first drawback consists in that the stability and stiffness properties of the fabrics traditionally used for making these products result in a corresponding stiffness of the assembled textile products, thus causing limitations as far as wearability of the textile products and users' coziness and comfort are concerned. A second drawback consists in the presence of limitations to the knitting possibilities offered by knitting machines traditionally used for making these fabrics, manufactured in very long pieces, which allow to make some types of wefts and patterns though not offering a high flexibility as far as fabric type or fineness is concerned, and not allowing to make automatically complex knitted partners onto the fabric, which could however be made with other types of knitting machines. A third drawback relates to manufacturing times for traditional fabrics, which are quite long. A fourth drawback consists in the low flexibility of manufacturing processes for these fabrics, since usually these knitting machines require a complex initial setup and are configured for manufacturing necessarily large amounts of fabric so that production can be cheap. However, this results in high limitations as far as the flexibility of the manufacturing process of the knitted products is concerned, and makes the production of samples and small on-demand amounts highly expensive.
The technical aim of the present invention is to obviate one or more of the drawbacks mentioned above. A further aim of the invention is to provide a method that allows to manufacture assembled textile products, in particular jackets, trousers, men's suits, women's dresses or other textile products assembled from a plurality of fabric parts, having a high wearability, i.e. a high capacity to fit the shapes of each user. Another aim of the invention is to provide a method that allows to make assembled textile products having a high comfort of use for users. Another aim of the invention is to provide a method that allows to make assembled textile products having a high degree of elasticity, even without using elastic yarns. Another aim of the invention is to provide a method that allows to make assembled textile products having a large variety of textile effects and knitted structures. Another aim of the invention is to provide a method that allows to make assembled textile products with a high quality and low cost. Another aim of the invention is to provide a method that allows to make assembled textile products for small productions and samplings, rapidly and with low costs. Another aim of the invention is to provide a method that allows to make assembled textile products with a high manufacturing flexibility. Another aim of the invention is to provide a method for making assembled textile products that allows to reduce the need for manual interventions by operators for making these products.
These and other aims, which shall appear better from the following description, are basically achieved by a method and by a textile product according to the appended claims, considered alone or in mutual combination and/or with one or more of the aspects referred to below. Further aspects of the invention are disclosed below, which can be considered alone or in any combination with the claims, including also claim 10 relating to an assembled textile product, and/or in mutual combination.
In one aspect, the invention relates to a method for making assembled textile products comprising the following steps: manufacturing a tubular knitted fabric by means of a circular knitting machine for hosiery or by means of a knitting machine for knitwear; pulling the tubular fabric produced by the knitting machine onto a support so as to stretch the tubular fabric; applying a heat adhesive material onto at least a first portion of an outer surface of the tubular fabric pulled over the support, and letting the heat adhesive material firmly adhere onto the tubular fabric; cutting the tubular fabric onto which the heat adhesive material has been applied, so as to obtain an open piece of fabric; cutting the open piece of fabric according to predefined cutting lines for obtaining one or more parts of a textile product to be assembled; assembling a plurality of parts obtained from the open piece of fabric or from a plurality of pieces of fabric for obtaining a textile product, preferably an assembled textile product, e.g. a jacket, a pair of trousers, a men's suit, a women's dress or other textile products assembled from a plurality of parts.
In another aspect, the invention relates to a method for arranging an open piece of fabric designed to make assembled textile products, in particular jackets, trousers, men's suits, women's dresses or other textile products assembled from a plurality of fabric parts, the method comprising the following steps:
arranging a tubular knitted fabric produced by means of a circular knitting machine for hosiery or by means of a knitting machine for knitwear, or as an alternative manufacturing the tubular knitted fabric by means of a circular knitting machine for hosiery or by means of a knitting machine for knitwear;
pulling the tubular fabric produced by the knitting machine onto a support so as to stretch the tubular fabric with a predefined tensioning degree of the fabric, so that at least part of the inner surface of the tubular fabric contacts the support and an outer surface of the tubular fabric is still accessible;
applying a heat adhesive material onto at least a first portion of an outer surface of the tubular fabric pulled over the support, and letting the heat adhesive material firmly adhere under heat onto the tubular fabric so as to stabilize the first portion of fabric reducing its elasticity and/or deformability;
cutting the tubular fabric onto which the heat adhesive material has been applied, so as to obtain an open piece of fabric.
In a further aspect, the invention relates to a method for making assembled textile products, in particular jackets, trousers, men's suits, women's dresses or other textile products assembled from a plurality of fabric parts, comprising the following steps:
arranging an open piece of fabric made according to the preceding aspect;
cutting the open piece of fabric according to predefined cutting lines for obtaining one or more parts of a textile product to be assembled;
assembling a plurality of parts obtained from said open piece of fabric or from a plurality of pieces of fabric for obtaining an assembled textile product, in particular a jacket, a pair of trousers, a men's suit, a women's dress or other textile products assembled from a plurality of parts.
In a further aspect, the invention relates to a method for making assembled textile products, in particular jackets, trousers, men's suits, women's dresses or other textile products assembled from a plurality of fabric parts, comprising the following steps:
arranging several parts of a textile product to be assembled, each part being made by cutting along predefined cutting lines a portion of an open piece of fabric, said piece of fabric being made in its turn by producing a tubular knitted fabric by means of a circular knitting machine for hosiery or by means of a circular knitting machine for knitwear, by pulling the tubular fabric produced by the knitting machine over a support so as to stretch the tubular fabric, by applying a heat adhesive material onto at least a first portion of an outer surface of the tubular fabric pulled over the support letting the heat adhesive material firmly adhere onto the tubular fabric, and by cutting the tubular fabric onto which the heat adhesive material has been applied, so as to obtain an open piece of fabric;
assembling said several parts for obtaining an assembled textile product, in particular a jacket, a pair of trousers, a men's suit, a women's dress or other textile products assembled from a plurality of parts.
In one aspect, said several parts of a textile product (preferably according to the preceding aspect) can be obtained from a single open piece of fabric or from a plurality of pieces of fabric that are distinct and/or different as far as type and features are concerned.
According to other aspects, the invention further relates to a method for making textile products, wherein:
the step of arranging the open piece of fabric is carried out by obtaining this piece already made, e.g. by purchasing it from an external manufacturer;
the step of arranging a tubular knitted fabric is carried out by obtaining this tubular fabric already made, e.g. by purchasing it from an external manufacturer;
the whole outer surface of the tubular fabric, or most of the outer surface of the tubular fabric, is coated with the heat adhesive material and the heat adhesive material is heated and then cooled or let cool down so as to stabilize the whole tubular fabric coated with the material;
the tubular fabric is of jersey type;
the tubular fabric is of jacquard type;
the tubular fabric comprises at least one jacquard portion obtained by a technique with yarn finished with a trimming knife;
the heat adhesive material to be applied onto the tubular fabric is mated with a weft-warp coating fabric;
the heat adhesive material to be applied onto the tubular fabric is mated with a knitted coating fabric;
the heat adhesive material to be applied onto the tubular fabric is mated with a coating fabric with a higher stiffness than the tubular fabric;
the heat adhesive material is in the form of a coating membrane;
the step of heating the heat adhesive material applied onto the tubular fabric is carried out by heating at least one pressure element at least partially matching the shape of the support and by pressing the heat adhesive material onto the tubular fabric by means of this pressure element;
the first portion of the outer surface of the tubular fabric develops longitudinally along the tubular item;
the first portion of the outer surface of the tubular fabric comprises at least one generatrix of the cylinder corresponding to the tubular fabric;
the tubular fabric is turned inside out before being pulled over the support and the heat adhesive material is applied onto the surface corresponding to the reverse or inner side of the tubular fabric produced by the knitting machine;
it further comprises the step of removing the tubular fabric, or the open piece of fabric, from the support;
the step of cutting the tubular fabric is carried out manually;
the step of cutting the tubular fabric is carried out automatically and/or by means of a suitable automatic cutting device;
the step of cutting the tubular fabric onto which the heat adhesive material has been applied so as to obtain an open piece of fabric is carried out before the step of removing the tubular fabric from the support;
the step of cutting the tubular fabric onto which the heat adhesive material has been applied so as to obtain an open piece of fabric is carried out after the step of removing the tubular fabric from the support;
the step of cutting the tubular fabric onto which the heat adhesive material has been applied so as to obtain an open piece of fabric is carried out by cutting the fabric along a generatrix of the cylinder corresponding to the tubular fabric;
the step of cutting the tubular fabric onto which the heat adhesive material has been applied so as to obtain an open piece of fabric is carried out by cutting the fabric at least on the first portion of the outer surface of the tubular fabric coated with the heat adhesive material;
the step of cutting the open piece of fabric according to predefined cutting lines for obtaining one or more parts of a textile product to be assembled is carried out by using paper patterns or cutting templates;
the step of producing a tubular knitted fabric by means of a circular knitting machine for hosiery or by means of a knitting machine for knitwear further comprises the step of automatically making onto the tubular fabric at least one pocket and/or at least one flounce and/or at least one relief and/or at least one portion of a terrycloth fabric and/or at least one portion of fabric having a variable fabric thickness and/or at least one multicolored portion of fabric made by using a plurality of yarns with different colors;
the step of producing a tubular knitted fabric by means of a circular knitting machine for hosiery or by means of a knitting machine for knitwear further comprises the step of automatically making onto the tubular fabric at least one portion of jacquard fabric and/or a jacquard pattern made with a technique with yarn finished with a trimming knife;
the step of applying a heat adhesive material onto an outer surface of the tubular fabric pulled over the support is carried out by spreading the heat adhesive material onto the tubular fabric;
the step of applying a heat adhesive material onto an outer surface of the tubular fabric pulled over the support is carried out by spraying the heat adhesive material onto the tubular fabric;
the step of applying a heat adhesive material onto an outer surface of the tubular fabric pulled over the support and the step of heating the heat adhesive material applied onto the tubular fabric are carried out by heating and spraying the heat adhesive material onto the tubular fabric;
the step of applying a heat adhesive material onto an outer surface of the tubular fabric pulled over the support is carried out by dipping the tubular fabric into the heat adhesive material;
the step of applying a heat adhesive material onto an outer surface of the tubular fabric pulled over the support and the step of heating the heat adhesive material applied onto the tubular fabric are carried out by dipping the tubular fabric into the heat adhesive material thus heated;
the step of assembling a plurality of parts obtained from the open piece of fabric or from a plurality of pieces of fabric for making an assembled textile product is carried out by placing the surface coated with the heat adhesive material on the inner side of the assembled textile product;
the method further comprises the step of applying an additional coating fabric onto the tubular fabric on the outer surface coated with the heated heat adhesive material, so as to obtain a double fabric defined by the tubular fabric and by the additional fabric joined together by means of the heat adhesive material placed between them;
the method further comprises the step of printing a predefined pattern onto the surface of the fabric coated with the heat adhesive material or onto the coating fabric;
the tubular fabric is made with a single needlebed of the knitting machine;
the tubular fabric is made with a double needlebed of the knitting machine;
the tubular fabric is made with a double needle cylinder of the knitting machine;
the method is used for making textile products such as ties, scarves, sweaters, skirts, etc.;
the circular knitting machine is of the type not having a large diameter;
the circular knitting machine has a diameter of 3.5 to 22 inches;
the circular knitting machine has a diameter of 5 to 13 inches;
the circular knitting machine is of hosiery type and has a diameter of 3.5 to 6 inches;
the circular knitting machine has a fineness of 10 to 28 needles per inch;
the circular knitting machine is of “body size” knitwear type and/or has a diameter of 10 to 22 inches;
the circular knitting machine is configured for making weft knitted fabric;
the circular knitting machine is a seamless knitting machine;
the circular knitting machine is with a single needlebed;
the circular knitting machine is with a double needlebed;
the circular knitting machine is with a double needle cylinder;
the circular knitting machine is configured for making onto the tubular fabric at least one portion of terrycloth fabric.
In another aspect, the invention further relates to a product obtained by a method according to any one of the appended claims. In another aspect, the invention further relates to a textile product comprising a plurality of parts of fabric cut from one or more open pieces of fabric, wherein at least one of such parts of fabric consists of a portion of tubular knitted fabric made by means of a circular knitting machine for hosiery or by means of a knitting machine for knitwear and having a heat adhesive material applied under heat onto at least one portion of a surface of the fabric so as to stabilize the fabric itself.
According to other aspects, which can be combined with the claims or with other aspects, the invention further relates to a textile product, wherein:
a plurality of parts of fabric of the textile product consists of portions of tubular knitted fabric made by means of a circular knitting machine for hosiery or by means of a knitting machine for knitwear and having a heat adhesive material applied, preferably under heat, onto at least one portion of a surface of the fabric;
the part of fabric or the parts of fabric made by means of a circular knitting machine for hosiery or by means of a knitting machine for knitwear are provided with a heat adhesive material applied, preferably under heat, onto a whole surface of the fabric or onto most of a surface of the fabric;
the heat adhesive material is applied onto an inner side of the assembled textile product.
Further characteristics and advantages shall be more evident from the detailed description of one or more preferred embodiments, which are exemplary though not exclusive, according to the accompanying figures, in which:
The figures mentioned above show some steps of the method according to corresponding embodiments of the invention, shown with reference to two respective embodiments of machines designed for executing these steps. A method according to the invention allows in particular to make jackets, trousers, men's suits, women's dresses or other textile products assembled from a plurality of fabric parts.
First of all, the method comprises the step of producing a tubular knitted fabric by means of a circular knitting machine for hosiery or by means of a knitting machine for knitwear. The fabric is preferably of weft knitted type. The fabric is preferably made by means of a single needlebed of the knitting machine, though in a variant it can be made by means of two needlebeds, in particular two needle cylinders. The circular knitting machine preferably has a diameter of 3.5 to 22 inches. The circular knitting machine preferably has a diameter of 5 to 13 inches. The circular knitting machine preferably has a fineness of 10 to 28 needles per inch. The circular knitting machine is preferably of single needlebed type. In a variant it can be of double needlebed or double cylinder type. In a variant, the step of producing a tubular knitted fabric can further comprise the step of automatically making onto the tubular fabric at least one pocket and/or at least one flounce and/or at least one relief and/or at least one portion of a terrycloth fabric and/or at least one portion of fabric having a variable fabric thickness.
The method can further comprise, during the step of producing a tubular knitted fabric, the step of making onto the tubular fabric at least a row of differentiated fabric developing along a generatrix of the cylinder corresponding to the tubular fabric, so as to define a reference line for correctly positioning later the tubular fabric on a support and/or for later guiding a cut of the tubular fabric along this reference line.
The method further comprises the step of pulling the tubular fabric 1 produced by the knitting machine onto a support 2 so as to stretch the tubular fabric 1 with a predefined tensioning degree of the fabric, so that at least part of the inner surface of the tubular fabric 1 contacts the support 2 and an outer surface of the tubular fabric 1 is still accessible. The size of the support is determined with respect to the size of the tubular fabric to be loaded onto the support itself. A plurality of supports can be provided, each of them being suitable for a specific size interval of the tubular fabric. This step is referred to in the two embodiments of
In a preferred embodiment, the heat adhesive material 4 is shaped as a sheet 5 or applied onto a supporting sheet 5, and the step of applying the heat adhesive material 4 onto an outer surface of the tubular fabric 1 pulled over the support 2 is carried out by placing a sheet 5 of heat adhesive material 4 or a sheet 5 containing the heat adhesive material 4 beside the tubular fabric 1 and contacting them. For instance, in
In the embodiment shown in
In the embodiment of
The steps shown in
step A: the operator loads the tubular fabric onto the support;
step B1: the operator applies a portion of sheet of heat adhesive material onto an upper side of the tubular fabric on the support, and the sheet is then pressed by means of the heated pressure element 7, so as to let the heat adhesive material adhere to the upper side of the tubular fabric;
step B2: the operator turns the support for positioning the lower side of the tubular fabric upwards;
step B3: the operator applies the remaining portion of the sheet of heat adhesive material onto the lower side, now positioned upwards, of the tubular fabric, by means of the heated pressure element 7;
step C: the operator cuts the tubular fabric by means of a cutting element 8 on a predefined cutting line;
step D: the operator removes from the support the open piece of fabric by cutting the tubular fabric and lays it onto a resting plane, from which it will then be moved to the following processing stations.
In another variant, the method can further comprise the step of printing a predefined pattern onto the surface of the fabric coated with the heat adhesive material 4. The method further comprises the step of cutting the open piece 9 of fabric according to predefined cutting lines for obtaining one or more parts of a textile product to be assembled. Preferably, the step of cutting the open piece 9 of fabric according to predefined cutting lines for obtaining one or more parts of a textile product to be assembled is carried out by using paper patterns or cutting templates. For instance, these paper patterns can be configured for defining a plurality of parts of a men's jacket. By choosing a suitable size of the diameter of the cylinder of the knitting machine it is possible to obtain open pieces of fabric having suitable sizes with respect to the paper patterns or cutting templates to be used, so as to minimize fabric waste. Thanks to the use of a plurality of knitting machines with suitable diameters it is possible to obtain a plurality of pieces of fabric suitable for respective paper patterns or cutting templates. In a preferred embodiment, the part or parts of a textile product to be assembled, obtained from the open piece 9 of fabric resulting from the cut tubular fabric 1, are wholly made up on their whole length of fabric mated with heat adhesive material 4 on a surface of the fabric. The method further comprises the step of assembling a plurality of parts obtained from said open piece 9 of fabric or from a plurality of pieces 9 of fabric for obtaining an assembled textile product, in particular a jacket, a pair of trousers, a men's suit, a women's dress or other textile products assembled from a plurality of parts. Preferably, the step of assembling a plurality of parts obtained from the open piece 9 of fabric or from a plurality of pieces 9 of fabric for making an assembled textile product is carried out by placing the surface coated with the heat adhesive material 4 on the inner side of the textile product. The method can further enable to make ties, scarves, sweaters, skirts, etc.
The invention further relates to an assembled textile product, in particular a jacket, a pair of trousers, a men's suit, a women's dress or another textile product assembled from a plurality of parts of fabric, comprising a plurality of parts of fabric cut from one or more open pieces 9 of fabric, wherein at least one of such parts of fabric consists of a portion of knitted tubular fabric 1 made by means of a circular knitting machine for hosiery or by means of a knitting machine for knitwear and having a heat adhesive material 4 applied under heat onto at least one portion of a surface of the fabric. In a preferred embodiment, a plurality of parts of fabric of the textile product consists of portions of tubular knitted fabric 1 made by means of a circular knitting machine for hosiery or by means of a knitting machine for knitwear and having a heat adhesive material 4 applied under heat onto at least one portion of a surface of the fabric. In a preferred embodiment, the part of fabric or the parts of fabric made by means of a circular knitting machine for hosiery or by means of a knitting machine for knitwear are provided with a heat adhesive material 4 applied under heat onto a whole surface of the fabric or onto most of the surface of the fabric. In a preferred embodiment, the heat adhesive material 4 is applied onto an inner side of the assembled textile product.
The invention can be used for making various types of textile products, such as e.g.: jackets, trousers, men's suits, women's dresses, scarves, ties, skirts, underwear, lingerie, knitwear, technical items, sports items, medical items, other textile products assembled from a plurality of fabric parts. The invention achieves important advantages. First of all, the invention allows to overcome one or more of the drawbacks of known technique. The invention further allows to produce assembled textile products having a high wearability, i.e. a high ability to fit the shapes of each user, and a high comfort of use for users. The invention further allows to produce assembled textile products having a degree of elasticity, either mono- or bidirectional, that can be also obtained without using elastic yarns and that can be easily configured according to the needs of the specific textile product. The invention further allows to make assembled textile products having a large variety of textile effects and knitted structures. The invention further allows to obtain assembled textile products with a high quality and low cost. The invention further allows to obtain textile products assembled from fabrics that can also be made specifically for small productions or samplings, without necessarily producing large amounts of fabric. The invention further allows to obtain assembled textile products in short times and with a high manufacturing flexibility. The invention further allows to reduce the need for manual interventions by operators for making assembled textile products.
Number | Date | Country | Kind |
---|---|---|---|
BS2015A000017 | Feb 2015 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2016/050362 | 1/25/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/125043 | 8/11/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3726745 | Gidge et al. | Apr 1973 | A |
3819638 | Ogawa et al. | Jun 1974 | A |
4111009 | Robinson | Sep 1978 | A |
4841748 | Watanabe | Jun 1989 | A |
6354017 | Bertoldo | Mar 2002 | B1 |
20040123368 | Bingham | Jul 2004 | A1 |
20050115281 | Mitchell | Jun 2005 | A1 |
20120255201 | Little | Oct 2012 | A1 |
20130333423 | Lonati | Dec 2013 | A1 |
20160044980 | Greenacre | Feb 2016 | A1 |
20170143059 | Gallagher | May 2017 | A1 |
Number | Date | Country |
---|---|---|
1286603 | Aug 2005 | EP |
2247125 | Mar 2006 | ES |
2008-101304 | May 2008 | JP |
2014-231647 | Dec 2014 | JP |
Entry |
---|
Spencer, “Knitting Technology”, CH 5, pp. 38-47, copyright 1983 (Year: 1983). |
Spencer, David; Knitting Technology, Chapter 7 and 13, copyright 1983, published by Elsevier (Year: 1983). |
Apr. 11, 2016 International Search Report issued in International Patent Application No. PCT/IB2016/050362. |
Apr. 11, 2016 Written Opinion of the International Searching Authority issued in International Patent Application No. PCT/IB2016/050362. |
Office Action issued in Colombian Patent Application No. NC2017/0007882. |
Number | Date | Country | |
---|---|---|---|
20180030629 A1 | Feb 2018 | US |