Claims
- 1. A method of manufacturing a molten metal casting annulus that comprises an insert support and cooling frame which cross-section defines a plane, said frame further defining an annular face that is generally perpendicular to said plane, said plane and annular face defining an enclosed planar annular space such that said annular face faces said enclosed planar annular space, said frame further defining an annular groove adjacent said annular face, and a multiplicity of graphite casting annulus insert components supported on said insert support and cooling frame, said insert components being fitted edge to edge around said casting annulus to define said annulus, said insert components further comprising a lip snugly fitted in said annular groove for positioning and locking said insert components in said frame, said method comprising chilling the graphite casting annulus insert components before inserting the lip of the respective insert components into the annular groove in said frame and allowing said insert components to warm and thermally expand to lock the lip in position in said groove.
- 2. The method of claim 1 further comprising the step of coating the graphite casting annulus insert components that define the casting annulus with submicron particles of molybdenum sulphide and colloidal graphite.
- 3. The method of claim 1 wherein the graphite casting annulus insert components are composed of graphite of sufficient permeability to permit transport lubricating oil in liquid or vapor form there through.
- 4. The method of claim 1 wherein the graphite casting annulus insert components are composed of graphite of sufficient permeability to permit solid state diffusion of submicron size particles of molybdenum disulphide and colloidal graphite there through.
- 5. The method of claim 4 further comprising the step of coating the graphite casting annulus insert components that define the casting annulus with submicron particles of molybdenum sulphide and colloidal graphite.
- 6. The method of claim 1 wherein the graphite casting annulus insert components are configured and constructed to define a hook (22) having a hook lip, and wherein the method comprises chilling said hook lip, then inserting said chilled lip into said annular groove in said frame, and then allowing said lip to warm and thermally expand locking the lip in position in said groove.
- 7. The method of claim 6 further comprising the step of coating the graphite casting annulus insert components that define the casting annulus with submicron particles of molybdenum sulphide and colloidal graphite.
- 8. The method of claim 6 wherein the graphite casting annulus insert components are composed of graphite of sufficient permeability to permit transport lubricating oil in liquid or vapor form there through.
- 9. The method of claim 6 wherein the graphite casting annulus insert components are composed of graphite of sufficient permeability to permit solid state diffusion of submicron size particles of molybdenum disulphide and colloidal graphite there through.
- 10. The method of claim 9 further comprising the step of coating the graphite casting annulus insert components that define the casting annulus with submicron particles of molybdenum sulphide and colloidal graphite.
- 11. The method of claim 6 wherein the frame defines a second annular groove adjacent said annular face and wherein the graphite casting annulus insert components are configured and constructed to define, in addition to said hook lip, a downwardly extending insertion lip, said methodcomprising chilling said downwardly extending insertion lip, then inserting said chilled downwardly extending lip into said second annular groove in said frame, and then allowing said downwardly extending lip to warm and thermally expand locking said downwardly extending lip in position in said second groove.
- 12. The method of claim 11 further comprising the step of coating the graphite casting annulus insert components that define the casting annulus with submicron particles of molybdenum sulphide and colloidal graphite.
- 13. The method of claim 11 wherein the graphite casting annulus insert components are composed of graphite of sufficient permeability to permit transport lubricating oil in liquid or vapor form there through.
- 14. The method of claim 11 wherein the graphite casting annulus insert components are composed of graphite of sufficient permeability to permit solid state diffusion of submicron size particles of molybdenum disulphide and colloidal graphite there through.
- 15. The method of claim 14 further comprising the step of coating the graphite casting annulus insert components that define the casting annulus with submicron particles of molybdenum sulphide and colloidal graphite.
- 16. A method of manufacturing a molten metal casting annulus that comprises an insert support and cooling frame which cross-section defines a plane, said frame further defining an annular face that is generally perpendicular to said plane, said plane and annular face defining an enclosed planar annular space such that said annular face faces said enclosed planar annular space, said frame further defining an annular groove adjacent said annular face, and a multiplicity of graphite casting annulus insert components supported on said insert support and cooling frame, said insert components being fitted edge to edge around said casting annulus to define said annulus, said insert components further comprising a lip snugly fitted in said annular groove for positioning and locking said insert components in said frame, said method comprising chilling said lip, then inserting said chilled lip into said annular groove in said frame, and then allowing said lip to warm and thermally expand locking the lip in position in said groove.
- 17. The method of claim 16 further comprising the step of coating the graphite casting annulus insert components that define the casting annulus with submicron particles of molybdenum sulphide and colloidal graphite.
- 18. The method of claim 16 wherein the graphite casting annulus insert components are composed of graphite of sufficient permeability to permit transport lubricating oil in liquid or vapor form there through.
- 19. The method of claim 16 wherein the graphite casting annulus insert components are composed of graphite of sufficient permeability to permit solid state diffusion of submicron size particles of molybdenum disulphide and colloidal graphite there through.
- 20. A method of manufacturing a molten metal casting annulus that comprises an insert support and cooling frame which cross-section defines a plane, said frame further defining an annular face that is generally perpendicular to said plane, said plane and annular face defining an enclosed planar annular space such that said annular face faces said enclosed planar annular space, said frame further defining an annular groove adjacent said annular face, and a multiplicity of graphite casting annular insert components supported on said insert support and cooling frame, said insert components being fitted edge to edge around said casting annulus to define said annulus, said insert components further comprising a lip snugly fitted in said annular groove for positioning and locking said insert components in said frame, said method comprising chilling the lips of a multiplicity of at least nine such insert components, then inserting the chilled lips of the respective insert components into said annular groove in said frame, and then allowing said lips to warm and thermally expand locking the lips in position in said groove.
CROSS-REFERENCE TO RELATE APPLICATION
This is a division of application Ser. No. 09/301,655 filed Apr. 28, 1999, now U.S. Pat. No. 6,192,970.
US Referenced Citations (1)
Number |
Name |
Date |
Kind |
4947925 |
Wagstaff et al. |
Aug 1990 |
A |