Method for making cycloaliphatic epoxides

Information

  • Patent Grant
  • 6084111
  • Patent Number
    6,084,111
  • Date Filed
    Friday, April 17, 1998
    26 years ago
  • Date Issued
    Tuesday, July 4, 2000
    24 years ago
Abstract
Compounds having the formula ##STR1## wherein X is selected from O, (CH.sub.2).sub.m O, S, (CH.sub.2).sub.m S, NH, (CH.sub.2).sub.m NH, COO.sup.-, (CH.sub.2).sub.m COO.sup.-, .sup.- OOC and .sup.- OOC (CH.sub.2).sub.m ;m is 1 to 6;n is 1 to 100;R.sub.1 is selected from H, (C.sub.1 -C.sub.20) alkyl, (C.sub.1 -C.sub.20) alkoxy and (C.sub.1 -C.sub.20) ester; andA is a saturated organic linking group selected from residues of polyol, polythiol, polyamine, and polyacid, are prepared by reacting compounds according to formula II ##STR2## with hydrogen peroxide in the presence of (a) tungstic acid or its metal salts, (b) phosphoric acid or its metal salts, and (c) at least one phase transfer catalyst.
Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to cycloaliphatic epoxides and an epoxidation process using hydrogen peroxide as oxidizing agent.
2. Description of the Prior Art
Recently, a variety of unsaturated polymers have been epoxidized with hydrogen peroxide in the presence of a quaternary ammonium tetrakis (diperoxotungsto) phosphate catalyst, (J. Poly. Sci. Part C: Poly. Lett. 1990, 28, 285; J. Poly Sci.: Part A; Poly Chem. 1991, 29, 547). This process suffers from certain disadvantages, e.g., the catalyst is not readily available.
Cyclic epoxides are very reactive towards ring opening reactions due to the high ring strain associated with the ring structure, and thus they are very difficult to prepare. Cyclic epoxide precursors are very sensitive to reaction conditions. Currently, these precursors are epoxidized using peracids with careful pH control. Organic acids are used and generated during the epoxidation process.
Cyclic olefins have been epoxidized under phase transfer conditions. However, unsaturated cyclic substrates containing ester or ether linkages are sensitive to side reactions such as cleavage. Epoxidation of these types of substrates under phase transfer conditions has not been demonstrated in the prior art.
U.S. Pat Nos. 3,360,501; 3,023,174; and 2,988,554; and UK specification 907,149, assigned to Ciba Ltd.; and U.S. Pat. Nos. 2,917,491; 2,890,209; 2,863,881; 2,853,499; 2,853,498; 2,745,847; and 2,750,395 assigned to Union Carbide Corporation teach processes which can produce cyclic epoxides having up to two cycloaliphatic rings. U.S. Pat. No. 3,671,592 assigned to Nitto Electric Industrial Co.; and U.S. Pat. No. 3,558,665 assigned to Argus Chemical Co., and Japanese Kokai 39-2473 of Mar. 10, 1964 assigned to Kanegafuchi Spinning Co., Ltd., also teach processes which can produce cyclic epoxides having only up to two cycloaliphatic rings.
Processes for producing cyclic epoxides having three or more cycloaliphatic rings have not been provided or suggested by the prior art.
SUMMARY OF THE INVENTION
It is an object of the present invention to eliminate the use of organic acids in the process of epoxidation of cyclic, aliphatic, unsaturated compounds.
It is a further object of the invention to simplify the epoxidation process and use hydrogen peroxide directly as epoxidation agent.
A still further object is to provide a new class of cycloaliphatic epoxides having at least three cycloaliphatic rings.
These objects, and others which will become apparent from the following disclosure, are achieved by the present invention which comprises in one aspect a process of preparation of compounds of formula I ##STR3## wherein X is selected from O, (CH.sub.2).sub.m O, S, (CH.sub.2).sub.m S, NH, (CH.sub.2).sub.m NH, COO.sup.-, (CH.sub.2).sub.m COO.sup.-, .sup.- OOC and .sup.- OOC (CH.sub.2).sub.m ;
m is 1 to 6;
n is 1 to 100;
R.sub.1 is selected from H, (C.sub.1 -C.sub.20) alkyl, (C.sub.1 -C.sub.20) alkoxy and (C.sub.1 -C.sub.20) ester; and
A is a saturated organic group selected from residues of alcohol, polyol, thiol, polythiol, amine, polyamine, acid, and polyacid; comprising reacting a compound according of formula II ##STR4## with hydrogen peroxide in the presence of (a) tungstic acid or its metal salts, (b) phosphoric acid or its metal salts, and (c) at least one phase transfer catalyst.
In another aspect, the invention comprises compounds of formula I, wherein n is 3 to 100.
The invention also comprises compositions comprising a polymer prepared by curing a compound of formula I wherein n is 3 to 100 in the presence of a cationic initiator.
DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS
The new method involves low level of catalyst composition and no organic acid and/or peracid, which results in simple product workup and process. The present invention uses hydrogen peroxide in the presence of (a) tungstic acid or its metal salts, (b) phosphoric acid or its metal salts, (c) at least one phase transfer catalyst. The epoxidation of unsaturated cyclic substrates with hydrogen peroxide in the presence of tungsten catalyst, phosphoric acid or its salt, and phase transfer catalyst can be performed at any temperature which is sufficient to react, however, particularly suitable temperatures are between 0.degree. C. and 100.degree. C., preferably from 25.degree. C. to 70.degree. C. The reaction takes place faster at higher temperature and requires shorter time to complete. The reaction is typically exothermic. Slow addition of hydrogen peroxide is preferred to control the exotherm. The reaction can be performed at pressures from subatmospheric to superatmospheric; however, the reaction is preferably carried out at atmospheric pressure.
The epoxidation can be performed with or without solvent. Solvent can be used to reduce the viscosity. If solvent is needed, water immiscible organic solvents such as chlorinated hydrocarbons, ethers, glycol ethers, hydrocarbons, combinations thereof, can be used. Particular suitable organic solvents are toluene, chlorobenzene, chloroform, methylene chloride, and the like.
Hydrogen peroxide solution is used as oxidant in the concentration of 5 to 70%. The amount of hydrogen peroxide can vary depending on the desired degree of epoxidation, typically from 0.1 to 1.5 equivalent per unsaturated double bond.
The phase transfer catalyst can be used from 0.001 to 1, preferably 0.05 to 0. 1, equivalents per equivalent of carbon--carbon double bond. Suitable phase transfer catalysts includes quaternary ammonium salts, quaternary phosphonium salts, and polyethers; for example, trioctylmethyl ammonium chloride, trioctylmethyl ammonium bromide, trioctylmethyl ammonium iodide, trioctylmethyl ammonium hydrogen sulfate, trioctylmethyl ammonium nitrate, tetrahexyl ammonium chloride, tetrahexyl ammonium bromide, tetrahexyl ammonium iodide, tetrahexyl ammonium hydrogen sulfate, tetrahexyl ammonium nitrate, tetrabutyl ammonium chloride, tetrabutyl ammonium bromide, tetrabutyl ammonium nitrate, tetrabutyl ammonium hydrogen sulfate, dioctadecyldimethyl ammonium chloride, dioctadecyldimethyl ammonium bromide, dioctadecyldimethyl ammonium nitrate, dioctadecyldimethyl ammonium hydrogen sulfate, dihexadecyldimethyl ammonium chloride, dihexadecyldimethyl ammonium bromide, dihexadecyldimethyl ammonium nitrate, dihexadecyldimethyl ammonium hydrogen sulfate, trioctylmethylphosphonium chloride, trioctylmethylphosphonium bromide, trioctylmethylphosphonium nitrate, trioctylmethylphosphonium hydrogen sulfate, tetrahexylphosphonium chloride, tetrahexylphosphonium bromide, tetrahexylphosphonium nitrate, tetrahexylphosphonium hydrogen sulfate, tetrabutylphosphonium chloride, tetrabutylphosphonium bromide, tetrabutylphosphonium nitrate, tetrabutylphosphonium hydrogen sulfate, tetrabutylphosphonium iodide, dioctadecyldimethylphosphonium chloride, dioctadecyldimethylphosphonium bromide, dioctadecyldimethylphosphonium nitrate, dioctadecyldimethylphosphonium hydrogen sulfate, dihexadecyldimethylphosphonium chloride, dihexadecyldimethylphosphonium bromide, dihexadecyldimethylphosphonium nitrate, dihexadecyldimethylphosphonium hydrogen sulfate, tetraalkyl ammonium hydroxide, tetraalkyl ammonium tribromide, tetraalkyl ammonium trifluoromethanesulfonate, polyethyleneglycol, polypropyleneglycol, polyethylene glycol-polypropylene glycol copolymer, any combination thereof and the like.
Phosphoric acid or its various salts can be used from 0.001 to 0.5 equivalents per equivalent of carbon--carbon double bond. Sodium or potassium salts of monobasic, dibasic, or tribasic salts of phosphoric acid can also be used. The final pH can be adjusted by other acids or bases to 0-5.
Tungsten catalysts can be used from 0.001 to 50% by weight based on the cyclic substrates. Tungstic acid or its metal salts can be used as the metal catalysts, the metal salts are water soluble and the acid is not. The typical catalyst is used from 0.005 to 1% and the preferred catalyst is tungstic acid which is not water soluble. Molybdenum derivatives may be used instead of tungsten compounds. Either tungstic acid which is not water soluble or its metal salts which are soluble can be used as the metal catalyst. The typical catalyst is used in amounts of about 0.005 to 1%, based on weight of unsaturated compound. The preferred metal catalyst is tungstic acid.
The expoxidation can be performed with or without solvent. The use of solvent is preferred because it reduces the viscosity. If solvent is desired, a water immiscible organic solvent such as chlorinated hydrocarbons, and ethers, glycol ethers, hydrocarbons, and combinations thereof, are especially useful. Particularly suitable organic solvents are toluene, chlorobenzene, chloroform, methylene chloride, heptane, and the like.
The method of the invention allows use of a low level of catalyst composition free of organic acid and/or peracid, resulting in simple product workup and process, and using readily available catalysts.
The new class of cyclic epoxides have the general formula: ##STR5## wherein O, (CH.sub.2).sub.m O, S, (CH.sub.2).sub.m S, NH, (CH.sub.2).sub.m NH, COO.sup.-, (CH.sub.2).sub.m COO.sup.-, .sup.- OOC and .sup.- OOC (CH.sub.2).sub.m ;
m is 1 to 6;
n is 3 to 100;
R.sub.1 is selected from H, (C.sub.1 -C.sub.20) alkyl, (C.sub.1 -C.sub.20) alkoxy and (C.sub.1 -C.sub.20) ester; and
A is a saturated organic linking group selected from residues of polyol, polythiol, polyamine, and polyacid.
Suitable organic linking groups A in the case of the process are selected from alcohols, polyols, thiols, polythiols, amines, polyamines, acids, and polyacids. Suitable alcohols include methanol, ethanol, propanol, and the like, up to C.sub.18 alcohols. Suitable polyols include, for example, 1,4-butane diol, 1,6-hexane diol, trimethylopropane, pentocrithritol, polyvinyl alcohol, dipentarithritol. Suitable acids include, for example, acrylic and methacrylic acid, whereas suitable polyacids include, for example, succinic acid, adipic acid, polyacrylic acid and copolymers thereof. Examples of amines include monoethanol amine, butylamine, diethyl amine, diethanolamine, and the like. Examples of thiols are the thiol analogues of the alcohols and polyols.
In the case of the compounds, where n is 3 to 100, suitable organic linking groups, A, are residues from residues of polyols, polythiols, polyamines, and polyacids having a functionality of 3 to 100.
Suitable (C.sub.1 -C.sub.20) alkyl groups are methyl, ethyl, propyl, butyl, and the like, with butyl preferred.
Suitable (C.sub.1 -C.sub.20) alkoxy groups are methoxy, ethoxy, and the like, and alkoxylated alkoxy groups.
Suitable (C.sub.1 -C.sub.20) ester groups are alkyl ester groups such as methyl esters, and the like.
X is selected from O, (CH.sub.2).sub.m O, S, (CH.sub.2).sub.m S, NH, (CH.sub.2).sub.m NH, COO.sup.-, (CH.sub.2).sub.m COO.sup.-, .sup.- OOC and .sup.- OOC (CH.sub.2).sub.m ; wherein m is 1 to 6. The most preferred X groups are O, COO.sup.- ; and .sup.- OOC. In the product of the process of the invention defined by formula I, whenever n is 2 or more each X can be different, but is preferably the same.
Diepoxides, wherein n is 2, are preferred in the case of the process.
The novel cyclic epoxides produced by the process of the invention can be used in applications such as coatings, epoxy/amine cure, cationic cure, and chemical intermediates for functionalizations.





EXAMPLES
The following non-limiting examples are presented to illustrate a few embodiments of the invention. All parts and percentages are by weight unless otherwise indicated.
Example 1
Preparation of Ethylenically Unsaturated Diester
Tetrahydrophthalic anhydride (152.2 g), 1-butanol (74.1 g) were added to the reactor and the mixture was heated while stirring to 110.degree. C. Exothermic reaction took place and the reactor temperature reached to 150.degree. C. Water cooling was applied to control the temperature at 110.degree. C. The reaction was kept at 110.degree. C. for two hours when the acid anhydride absorption disappeared based on FTIR. Tetrahydrophthalic anhydride butyl half ester was obtained.
After cooling, 1,4-butanediol (46.0 g), toluene (60.0 g), heptane (60.0 g), and methane sulfonic acid (70%, 8.0 g) were added, the mixture was stirred and heated to reflux. Esterification took place and the water formed was removed azeotropically; esterification was completed in three hours and 20.2 grams of water was collected. The reaction mixture, after cooling down to room temperature, was washed with 25.0 g of 25% sodium hydroxide twice. The final product was isolated by removing the solvents under reduced pressure (yield 205.0 g).
Example 2
Preparation of Diepoxide from Unsaturated Diester
Product from Example 1(100.0 g) was added to a reactor, followed by tungstic acid (0.80 g), phosphoric acid (85%, 0.40 g), sodium hydroxide (25%, 0.40 g), Aliquot 336 (0.80 g), and toluene (200.0 g). The mixture was stirred and heated to 50.degree. C. when slow addition of hydrogen peroxide (30%, 65.0 ml) began. The hydrogen peroxide addition was completed in 70 minutes to control the exotherm. The reaction mixture was kept at 50.degree. C. for 2.5 additional hours when no residual starting material was detected by GC and FTIR.
The final mixture was separated into two phases. The organic phase was isolated and washed twice with 50 ml of water to remove the excess hydrogen peroxide. The final dicycloaliphatic epoxide was isolated by removing solvent at 95.degree. C. under reduced pressure which has epoxy equivalent weight of 280.1 g/eq (yield 94.0 g).
Example 3
Preparation of Unsaturated Dicyclic Diester
6-Methyl-3-cyclohexene-1-1-methanol (180.0 g), adipic acid (100.0 g), heptane (120.0 g), and methanesulfonic acid (70%, 6.0 g) were added to a reactor which was equipped with a mechanical stirrer, condenser, thermal couple. The reaction mixture was heated to reflux under stirring and esterification process took place. The water formed was removed azeotropically while refluxing. The reaction was completed in 6 hours and the final temperature was 110.degree. C.; 26.6 grams of water was collected.
The final reaction mixture was washed with 10.0 g of 25% sodium hydroxide after cooling down to room temperature. The final dicyclic diester was isolated by removing the heptane solvent at 95.degree. C. under reduced pressure (yield 237.0 g).
Example 4
Preparation of Diepoxide from Unsaturated Dicyclic Diester
Unsaturated dicyclic diester from Example 3 (100.0 g) was added to a reactor, followed by tungstic acid (0.80 g), phosphoric acid (85%, 0.40 g), sodium hydroxide (25%, 0.40 g), Aliquot 336 (0.80 g), and toluene (200.0 g). The mixture was stirred and heated to 50.degree. C. when slow addition of hydrogen peroxide (30%, 70.0 ml) began. The hydrogen peroxide addition was completed in 40 min to control the exotherm. The reaction mixture was kept at 50.degree. C. for 2.0 additional hours when no residual starting material was detected by GC and FTIR.
The final mixture was separated into two phases, the organic phase was isolated and washed twice with 50 ml of water to remove the excess hydrogen peroxide. The final dicycloaliphatic epoxide was isolated by removing solvent at 95.degree. C. under reduced pressure which has epoxy equivalent weight of 207.0 g/eq (yield 105.0 g).
Example 5
Preparation of Esters
Tetrahydrophthalic anhydride (152.2 g), and 1-butanol (74.1 g) were added to the reactor, the mixture was heated while stirring to 110.degree. C. Exothermic reaction took place and the reactor temperature reached to 150.degree. C., and then water cooling was applied and the temperature was controlled at 110.degree. C. The reaction was kept at 110.degree. C. for two hours when the acid anhydride absorption disappeared based on FTIR.
After cooling, trimethylolpropane (44.7 g), heptane (10.0 g), and methane sulfonic acid (70%, 8.0 g) were added. The mixture was then stirred and heated to reflux. Esterification took place and the water formed was removed azotropically. Esterification completed in three hours and 19.43 grams of water was collected. The reaction mixture, after cooling down to room temperature, was washed with 25.0 g of 25% sodium hydroxide twice. The final product was isolated by removing the solvents under reduced pressure (yield 235.0 g).
Example 6
Preparation of Triepoxides
The product from Example 5 (172.0 g) was added to a reactor, followed by tungstic acid (1.43 g), phosphoric acid (85%, 0.70 g), sodium hydroxide (25%, 0.70 g), Aliquat 336 (1.41 g), and toluene (300.0 g). The mixture was stirred and heated to 60.degree. C. when slow addition of hydrogen peroxide (30%, 100.0 ml) was begun. The hydrogen peroxide addition was completed in 70 min to control the exotherm. The reaction mixture was kept at 60.degree. C. for 12.0 additional hours after which no residual starting material was detected by GC and FTIR. The final mixture was separated into two phases. The organic phase was isolated and washed twice with 50 ml of water to remove the excess hydrogen peroxide. The final tricycloaliphatic epoxide product was isolated by removing solvent at 70.degree. C. under reduced pressure. The product had an epoxy equivalent weight of 350.0 g/eq (yield 146.3 g).
While the invention has been described in sufficient detail for those skilled in the art to make and use it, various modifications, alternatives, and improvements should become readily apparent without departing from the spirit and scope of the invention as set forth in the following claims.
Claims
  • 1. A process of preparing a compound of formula I ##STR6## wherein X is selected from O, (CH.sub.2).sub.m O, S, (CH.sub.2).sub.m S, NH, (CH.sub.2).sub.m NH, COO.sup.-, (CH.sub.2).sub.m COO.sup.-, .sup.- OOC and .sup.- OOC(CH.sub.2).sub.m ;
  • m is 1 to 6;
  • n is 1 to 100;
  • R.sub.1 is (C.sub.1 -C.sub.20) ester; and
  • A is a saturated organic group selected from residues of polyol, polythiol, polyamine, and polyacid; comprising reacting a compound according of formula II ##STR7## with hydrogen peroxide in the presence of (a) tungstic acid or its metal salts, (b) phosphoric acid or its metal salts, and (c) at least one phase transfer catalyst.
  • 2. The process according to claim 1 wherein said n is 2 to 100 and A is a residue of a polyol, polythiol, polyamine or polyacid.
  • 3. The process according to claim 1 wherein said hydrogen peroxide is introduced in an amount of about 0.1 to 1.5 equivalent per equivalent of unsaturated double bond in the compound of formula II.
  • 4. The process according to claim 1 wherein the reacting is conducted at a temperature of about 0.degree. C. to 100.degree. C.
  • 5. The process according to claim 1 wherein the reacting is conducted at a temperature of about 25.degree. C. to 70.degree. C.
  • 6. The process according to claim 1 wherein the phase transfer catalyst is present in an amount of about 0.001 to 1 equivalents per equivalent of carbon--carbon double bond in the unsaturated polymer or oligomer.
  • 7. The process according to claim 1 wherein the phase transfer catalyst is present in an amount of about 0.05 to 0.1 equivalents per equivalent of carbon--carbon double bond in the unsaturated polymer or oligomer.
  • 8. The process according to claim 1 wherein the phase transfer catalyst is selected from the group consisting of quaternary ammonium salts, quaternary phosphonium salts, and polyethers.
  • 9. The process according to claim 1 wherein the reaction is conducted in the presence of a water immiscible organic solvent.
  • 10. The process according to claim 1 wherein the reaction is conducted in the presence of a water immiscible organic solvent selected from the group consisting of chlorinated hydrocarbons, ethers, glycol ethers, hydrocarbons, combinations thereof.
  • 11. The process according to claim 10 wherein the solvent is selected from the group consisting of toluene, chlorobenzene, chloroform, and methylene chloride.
  • 12. The process according to claim 1 wherein the phosphoric acid or phosphoric acid salt comprises about 0.001 to 0.5 equivalents per equivalent of carbon--carbon double bond of the compound of formula II.
  • 13. The process according to claim 1 wherein the phosphoric acid or salt thereof is a sodium or potassium salt of monobasic, dibasic, or tribasic phosphoric acid.
  • 14. The process according to claim 1 wherein the pH of the reaction is adjusted by acid or base to about 0-5.
  • 15. The process according to claim 1 wherein the tungstic acid or salts thereof is tungstic acid.
  • 16. The process according to claim 1 wherein the tungstic acid or salts thereof is present in and amount of about 0.005 to 1% based on weight of compound of formula II.
Parent Case Info

This is a divisional of application Ser. No. 08/831,677 filed on Apr. 10, 1997 now U.S. Pat. No. 5,767,150.

US Referenced Citations (16)
Number Name Date Kind
2745847 Phillips May 1956
2750395 Phillips et al. Jun 1956
2848426 Newey Aug 1958
2853408 Phillips Sep 1958
2853499 Phillips et al. Sep 1958
2857402 Phillips Oct 1958
2863881 Phillips et al. Dec 1958
2890209 Phillips Jun 1959
2917491 Phillips et al. Dec 1959
2988554 Batzer et al. Jun 1961
3023174 Batzer et al. Feb 1962
3057880 Lynn et al. Oct 1962
3264230 Proops Aug 1966
3360501 Widmer et al. Dec 1967
3558665 Friedman et al. Jan 1971
3671592 Yoshihara Jun 1972
Foreign Referenced Citations (2)
Number Date Country
39-2473 Mar 1964 JPX
907149 Oct 1962 GBX
Non-Patent Literature Citations (2)
Entry
J. Poly. Science, Part C, Poly Letters, 1990 vol. 28, p. 285.
J. Poly. Science, Part A, Poly. Chem, 1991, vol. 29, p. 547.
Divisions (1)
Number Date Country
Parent 831677 Apr 1997