1. Field of the Invention
The invention relates generally to making DC-to-DC converters. More specifically the invention relates to construction of a coupled inductor within a multi-phase DC-to-DC converter.
2. Background of the Invention
A DC-to-DC converter, as known in the art, provides an output voltage that is a step-up, a step-down, or a polarity reversal of the input voltage source. Certain known DC-to-DC converters have parallel power units with inputs coupled to a common DC voltage source and outputs coupled to a load, such as a microprocessor. Multiple power-units can sometimes reduce cost by lowering the power and size rating of components. A further benefit is that multiple power units provide smaller per-power-unit peak current levels, combined with smaller passive components.
The prior art also includes switching techniques in parallel-power-unit DC-to-DC converters. By way of example, power units may be switched with pulse width modulation (PWM) or with pulse frequency modulation (PFM). Typically, in a parallel-unit buck converter, the energizing and de-energizing of the inductance in each power unit occurs out of phase with switches coupled to the input, inductor and ground. Additional performance benefits are provided when the switches of one power unit, coupling the inductors to the DC input voltage or to ground, operate out of phase with respect to the switches in another power unit. Such a “multi-phase,” parallel power unit technique results in a higher effective frequency of ripple current which is easier to filter with a capacitor, to which all the inductors are coupled at their respective output terminals.
It is clear that smaller inductances are needed in DC-to-DC converters to support the response time required in load transients and without prohibitively costly output capacitance. More particularly, the capacitance requirements for systems with fast loads, and large inductors, may make it impossible to provide adequate capacitance configurations, in part due to the parasitic inductance of a large physical layout. But smaller inductors create other issues, such as the higher frequencies used in bounding the AC peak-to-peak current ripple within each power unit. Higher frequencies and smaller inductances enable shrinking of part size and weight. However, higher switching frequencies result in more heat dissipation and lower efficiency. In short, small inductance is good for transient response, but large inductance is good for AC current ripple reduction and efficiency.
The prior art has sought to reduce the current ripple in multiphase switching topologies by coupling inductors. For example, one system set forth in U.S. Pat. No. 5,204,809, incorporated herein by reference, couples two inductors in a dual-phase system driven by an H bridge to help reduce ripple current. In one article, Investigating Coupling Inductors in the Interleaving QSW VRM, IEEE APEC (Wong, February 2000), slight benefit is shown in ripple reduction by coupling two windings using presently available magnetic core shapes. However, the benefit from this method is limited in that it only offers slight reduction in ripple at some duty cycles for limited amounts of coupling.
One known DC-to-DC converter offers improved ripple reduction that either reduces or eliminates the afore-mentioned difficulties. Such a DC-to-DC converter is described in commonly owned U.S. Pat. No. 6,362,986 issued to Schultz et al., incorporated herein by reference. The '986 patent can improve converter efficiency and reduce the cost of manufacturing DC-to-DC converters.
Specifically, the '986 patent shows one system that reduces the ripple of the inductor current in a two-phase coupled inductor within a DC-to-DC buck converter. The '986 patent also provides a multi-phase transformer model to illustrate the working principles of multi-phase coupled inductors. It is a continuing problem to address scalability and implementation issues DC-to-DC converters.
As circuit components and, thus, printed circuit boards (PCB), become smaller due to technology advancements, smaller and more scalable DC-to-DC converters are needed to provide for a variety of voltage conversion needs. One specific feature presented hereinafter is to provide a DC-to-DC converter, the DC-to-DC converter being scalable in some embodiments. Another feature is to provide a converter that is mountable to a PCB. Yet another feature is to provide a lower cost manufacturing methodology for DC-to-DC converters, as compared to the prior art. These and other features will be apparent in the description that follows.
As used herein, a “coupled” inductor implies a magnetic interaction between at least one inductor of each of several different phases. Coupled inductors described herein may be used within DC-to-DC converters or within a power converter for power conversion applications, for example.
A method of one aspect provides for constructing a magnetic core. Such a core is, for example, useful in applications detailed in the '986 patent. In one aspect, the method provides for constructing N-phase coupled inductors as both single and scalable magnetic structures, where N is greater than 1. An N-phase inductor as described herein may include N-number of windings. One method additionally describes construction of a magnetic core that enhances the benefits of using the scalable N-phase coupled inductor.
In one aspect, the N-phase coupled inductor is formed by coupling first and second magnetic cores in such a way that a planar surface of the first core is substantially aligned with a planar surface of the second core in a common plane. The first and second magnetic cores may be formed into shapes that, when coupled together, may form a single scalable magnetic core having desirable characteristics, such as ripple current reduction and ease of implementation. In one example, the cores are fashioned into shapes, such as a U-shape, an I-shape (e.g., a bar), an H-shape, a ring-shape, a rectangular-shape, or a comb. In another example, the cores could be fashioned into a printed circuit trace within a PCB.
In another aspect, certain cores form passageways through which conductive windings are wound when coupled together. Other cores may already form these passageways (e.g., the ring-shaped core and the rectangularly shaped core). For example, two H-shaped magnetic cores may be coupled at the legs of each magnetic core to form a passageway. As another example, a multi-leg core may be formed as a comb-shaped core coupled to an I-shaped core. In yet another example, two I-shaped cores are layered about a PCB such that passageways are formed when the two cores are coupled to one another at two or more places, or when pre-configured holes in the PCB are filled with a ferromagnetic powder.
Advantages of the method and structures herein include a scalable and cost effective DC-to-DC converter that reduces or nearly eliminates ripple current. The methods and structures further techniques that achieve the benefit of various performance characteristics with a single, scalable, topology.
It is noted that, for purposes of illustrative clarity, certain elements in the drawings may not be drawn to scale. Specific instances of an item may be referred to by use of a reference numeral in parentheses (e.g., winding 506(1)) while reference numerals without parentheses refer to any such item (e.g., windings 506).
In operation, DC-to-DC converter system 10 converts an input signal 18 from source 12 to an output signal 30. The voltage of signal 30 may be controlled through operation of switches 14, to be equal to or different from signal 18. Specifically, coupled inductor 28 has one or more windings (not shown) that extend through and about inductors 24, as described in detail below. These windings attach to switches 14, which collectively operate to regulate the output voltage of signal 30 by sequentially switching inductors 24 to signal 18.
When N=2, system 10 may for example be used as a two-phase power converter, (e.g., power supply). System 10 may also be used in both DC and AC based power supplies to replace a plurality of individual discrete inductors such that coupled inductor 28 reduces inductor ripple current, filter capacitances, and/or PCB footprint sizes, while delivering higher system efficiency and enhanced system reliability. Other functional and operational aspects of DC-to-DC converter system 10 may be exemplarily described in the '986 patent, features of coupled inductor 28 are described in detail below in connection with
In this embodiment, the first magnetic core 36A may be formed from a ferromagnetic material into a U-shape. The second magnetic core 36B may be formed from the same ferromagnetic material into a bar, or I-shape, as shown. As the two magnetic cores 36A, 36B are coupled together, they form a passageway 38 through which windings 34A, 34B are wound. The windings 34A, 34B may be formed of a conductive material, such as copper, that winds through and about the passageway 38 and the magnetic core 36B. Moreover, those skilled in the art should appreciate that windings 34A, 34B may include a same or differing number of turns about the magnetic core 36B. Windings 34A, 34B are shown as single turn windings, to decrease resistance through inductor 33.
The windings 34A and 34B of inductor 33 may be wound in the same or different orientation from one another. The windings 34A and 34B may also be either wound about the single magnetic core in the same number of turns or in a different number of turns. The number of turns and orientation of each winding may be selected so as to support the functionality of the '986 patent, for example. By orienting the windings 34A and 34B in the same direction, the coupling is directed so as to reduce the ripple current flowing in windings 34A, 34B.
Those skilled in the art should appreciate that a gap (not shown) may exist between magnetic cores 36A, 36B, for example to reduce the sensitivity to direct current when inductor 33 is used within a switching power converter. Such a gap is for example illustratively discussed as dimension A,
The dimensional distance between windings 34A, 34B may also be adjusted to adjust leakage inductance. Such a dimension is illustratively discussed as dimension E,
As shown, magnetic core 36A is a “U-shaped” core while magnetic core 36B is an unshaped flat plate. Those skilled in the art should also appreciate that coupled inductor 33 may be formed with magnetic cores with different shapes. By way of example, two “L-shaped” or two “U-shaped” cores may be coupled together to provide like overall form as combined cores 36A, 36B, to provide like functionality within a switching power converter. Cores 36A, 36B may be similarly replaced with a solid magnetic core block with a hole therein to form passageway 38. At least part of passageway 38 is free from intervening magnetic structure between windings 34A, 34B; air or non-magnetic structure may for example fill the space of passageway 38 and between the windings 34A, 34B. In one embodiment, intervening magnetic structure fills no more than 50% of a cross-sectional area between windings 34A, 34B, and within passageway 38; by way of example, the cross-sectional area of passageway 38 may be defined by the plane of dimensions 39A (depth), 39B (height), which is perpendicular to a line 39C (separation distance) between windings 34A, 34B.
In one embodiment, windings 40 and 42 wind through passageway 45 and around ring magnetic core 44 such that ring magnetic core 44 and windings 40, 42 cooperate with two phase coupling within a switching power converter. Winding 40 is oriented such that dc current in winding 40 flows in a first direction within passageway 45; winding 42 is oriented such that dc current in winding 42 flows in a second direction within passageway 45, where the first direction is opposite to the second direction. Such a configuration avoids dc saturation of core 44, and effectively reduces ripple current. See U.S. Pat. No. 6,362,986.
where μ0 is the permeability of free space, L1 is leakage inductance, and Lm is magnetizing inductance. One advantage of this embodiment is apparent in the ability to vary the leakage and the magnetizing inductances by varying the dimensions of inductor 60. For example, the leakage inductance and the magnetizing inductance can be controllably varied by varying the dimension E (e.g., the distance between the windings 64 and 63). In one embodiment, the cores 61 and 62 may be formed as conductive prints, or traces, directly with a PCB, thereby simplifying assembly processes of circuit construction such that windings 63, 64 are also PCB traces that couple through one or more planes of a multi-plane PCB. In one embodiment, the two-phase inductor 60 may be implemented on a PCB as two parallel thin-film magnetic cores 61 and 62. In another embodiment, inductor 60 may form planar surfaces 63P and 64P of respective windings 63, 64 to facilitate mounting of inductor 60 onto the PCB. Dimensions E, A between windings 63, 64 may define a passageway through inductor 60. At least part of this passageway is free from intervening magnetic structure between windings 63, 64; air may for example fill the space of the passageway and between windings 63, 64. In one embodiment, intervening magnetic structure fills no more than 50% of a cross-sectional area between windings 63, 64, and within the passageway; by way of example, the cross-sectional area of the passageway may be defined by the plane of dimensions A, C, which is perpendicular to a line parallel to dimension E between windings 63, 64.
In one embodiment, windings 88, 89 wind around teeth 86A of core 86, rather than around I-shaped core 87 or the non-teeth portion of core 86.
Advantages of this embodiment provide a PCB structure that may be designed in layout. As such, PCB real estate determinations may be made with fewer restrictions, as the inductor 100 becomes part of the PCB design. Other advantages of the embodiment are apparent in
Similar to coupled inductor 100,
In
In
Inductor 500 includes core 502 and N windings 506, wherein each winding may be electrically connected to a respective phase (e.g., a phase 26 of
Core 502 forms N-1 interior passageways 504. For example, inductor 500 is illustrated in
Core 500 has a width 526 (labeled in
As stated above, inductor 500 includes N windings 506, and inductor 500 is illustrated in
Each passageway 504 may be at least partially free of intervening magnetic structure between the two windings wound therethrough. For example, as may be best observed from
Each of the two windings in a passageway 504 are separated by a linear separation distance 534 (labeled in
Each winding 506 has two ends, wherein the winding may be electrically connected to a circuit (e.g., a power converter) at each end. Each end of a given winding extends from opposite sides of core 502. For example, one end of winding 506(2) extends from side 522 of core 502 in the direction of arrow 538 (illustrated in
In an embodiment, windings 506 have rectangular cross section as illustrated in
In an embodiment, each winding 506 has a first end forming a first tab 514 and a second end forming a second tab 518, as illustrated in
Core 502 and each winding 506 collective form a magnetizing inductance of inductor 500 as well as a leakage inductance of each winding 506. As discussed above with respect to
Windings 506(4) and 506(5) each form a first end for connecting the winding to a respective switching node of a power converter. The first end of winding 506(4) forms a first tab 514(4), and the first end of winding 506(5) forms a first tab 514(5). Each of first tabs 514(4) and 514(5) has a planar surface about parallel to the bottom planar surface of core 502(1) for connecting the first tab to a printed circuit board disposed proximate to the bottom planar surface of core 502(1). Each of first tabs 514(4) and 514(5) extends beyond core 502(1) from first side 522(1) of the core in the direction indicated by arrow 552.
Windings 506(4) and 506(5) each form a second end for connecting the winding to a common output node of the power converter. The second end of winding 506(4) forms a second tab 518(4), and the second end of winding 506(5) forms a second tab 518(5). Each of second tabs 518(4) and 518(5) has a planar surface about parallel to the bottom planar surface of core 502(1) for connecting the second tab to the printed circuit board disposed proximate to the bottom planar surface of core 502(1). Each of second tabs 518(4) and 518(5) extends beyond core 502(1) from second side 524(1) of the core in the direction indicated by arrow 554.
While some inductor embodiments include two-phase coupling, such as those shown in
Some embodiments of the inductors disclosed herein include solder tabs disposed on a bottom surface of the inductor's magnetic core. In such embodiments, each winding has a first end electrically coupled to a respective first solder tab disposed on the core's bottom surface, and each winding has a second end electrically coupled to a respective second solder tab disposed on the core's bottom surface. Furthermore, some embodiments of the inductors disclosed herein include thru-hole pins for connecting the inductor's windings to a printed circuit board (e.g., via solder). In such embodiments, each winding has a first end electrically coupled to a respective first thru-hole pin, and each winding has a second end electrically coupled to a respective second thru-hole pin. For example,
Since certain changes may be made in the above methods and systems without departing from the scope hereof, one intention is that all matter contained in the above description or shown in the accompanying drawings be interpreted as illustrative and not in a limiting sense. By way of example, those skilled in the art should appreciate that items as shown in the embodiments may be constructed, connected, arranged, and/or combined in other formats without departing from the scope of the invention. Another intention includes an understanding that the following claims are to cover all generic and specific features of the invention described herein, and all statements of the scope of the invention which, as a matter of language, might be said to fall there between.
This application is a continuation of copending U.S. patent application Ser. No. 12/987,944, filed 10 Jan. 2011, which is a continuation of U.S. patent application Ser. No. 12/392,602, filed 25 Feb. 2009, now U.S. Pat. No. 7,898,379, which is a continuation-in-part of U.S. patent application Ser. No. 12/344,163, filed 24 Dec. 2008, now U.S. Pat. No. 7,893,806, which is a continuation of U.S. patent application Ser. No. 11/929,827, filed 30 Oct. 2007, now U.S. Pat. No. 7,498,920, which is a continuation-in-part of U.S. patent application Ser. No. 11/852,207, filed 7 Sep. 2007, which is a divisional of U.S. patent application Ser. No. 10/318,896, filed 13 Dec. 2002, now U.S. Pat. No. 7,352,269. All of the above-mentioned patent applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2212543 | Jovy | Aug 1940 | A |
3185947 | Freymodsson | May 1965 | A |
3201731 | Baenziger et al. | Aug 1965 | A |
3396342 | Feinberg | Aug 1968 | A |
3447068 | Hart | May 1969 | A |
3878495 | Thomas | Apr 1975 | A |
3988665 | Neumaier et al. | Oct 1976 | A |
4223360 | Sansom et al. | Sep 1980 | A |
4455545 | Shelly | Jun 1984 | A |
4488136 | Hansen et al. | Dec 1984 | A |
4531085 | Mesenhimer | Jul 1985 | A |
4636752 | Saito | Jan 1987 | A |
4777406 | Ross et al. | Oct 1988 | A |
4800479 | Bupp | Jan 1989 | A |
5003277 | Sokai et al. | Mar 1991 | A |
5103201 | Schmeller | Apr 1992 | A |
5123989 | Horiishi et al. | Jun 1992 | A |
5161098 | Balakrishnan | Nov 1992 | A |
5177460 | Dhyanchand et al. | Jan 1993 | A |
5182535 | Dhyanchand | Jan 1993 | A |
5204809 | Andresen | Apr 1993 | A |
5225971 | Spreen | Jul 1993 | A |
5353001 | Meinel et al. | Oct 1994 | A |
5436818 | Barthold | Jul 1995 | A |
5469334 | Balakrishnan | Nov 1995 | A |
5565837 | Godek et al. | Oct 1996 | A |
5568111 | Metsler | Oct 1996 | A |
5574420 | Roy et al. | Nov 1996 | A |
5594402 | Krichtafovitch et al. | Jan 1997 | A |
5631822 | Silberkleit et al. | May 1997 | A |
5642249 | Kuznetsov | Jun 1997 | A |
5764500 | Matos | Jun 1998 | A |
5939966 | Shin'Ei | Aug 1999 | A |
6018468 | Archer et al. | Jan 2000 | A |
6060977 | Yamamoto et al. | May 2000 | A |
6147584 | Shin'el | Nov 2000 | A |
6342778 | Catalano et al. | Jan 2002 | B1 |
6348848 | Herbert | Feb 2002 | B1 |
6356179 | Yamada | Mar 2002 | B1 |
6362986 | Schultz et al. | Mar 2002 | B1 |
6377155 | Allen et al. | Apr 2002 | B1 |
6388896 | Cuk | May 2002 | B1 |
6420953 | Dadafshar | Jul 2002 | B1 |
6477414 | Silvian | Nov 2002 | B1 |
6549111 | De Graaf et al. | Apr 2003 | B1 |
6578253 | Herbert | Jun 2003 | B1 |
6714428 | Huang et al. | Mar 2004 | B2 |
6737951 | Decristofaro et al. | May 2004 | B1 |
6774758 | Gokhale et al. | Aug 2004 | B2 |
6784644 | Xu et al. | Aug 2004 | B2 |
6791444 | Masuda et al. | Sep 2004 | B1 |
6867678 | Yang | Mar 2005 | B2 |
6903648 | Baumann et al. | Jun 2005 | B2 |
6922883 | Gokhale et al. | Aug 2005 | B2 |
6965290 | Gokhale et al. | Nov 2005 | B2 |
6980077 | Chandrasekaran et al. | Dec 2005 | B1 |
7187263 | Vinciarelli | Mar 2007 | B2 |
7199695 | Zhou et al. | Apr 2007 | B1 |
7233132 | Dong et al. | Jun 2007 | B1 |
7239530 | Djekic et al. | Jul 2007 | B1 |
7248139 | Podlisk et al. | Jul 2007 | B1 |
7259648 | Matsutani et al. | Aug 2007 | B2 |
7280025 | Sano | Oct 2007 | B2 |
7292128 | Hanley | Nov 2007 | B2 |
7310039 | Zhang | Dec 2007 | B1 |
7317305 | Stratakos et al. | Jan 2008 | B1 |
7352269 | Li et al. | Apr 2008 | B2 |
7425883 | Matsutani et al. | Sep 2008 | B2 |
7498920 | Sullivan et al. | Mar 2009 | B2 |
7525406 | Cheng | Apr 2009 | B1 |
7525408 | Li et al. | Apr 2009 | B1 |
7548046 | Stratakos et al. | Jun 2009 | B1 |
7567163 | Dadafshar et al. | Jul 2009 | B2 |
7994888 | Ikriannikov | Aug 2011 | B2 |
20020067234 | Kung | Jun 2002 | A1 |
20020093413 | Shin'ei | Jul 2002 | A1 |
20040017276 | Chen et al. | Jan 2004 | A1 |
20040085173 | Decristofaro et al. | May 2004 | A1 |
20050024179 | Chandrasekaran et al. | Feb 2005 | A1 |
20060089022 | Sano | Apr 2006 | A1 |
20060145800 | Dadafshar et al. | Jul 2006 | A1 |
20060145804 | Matsutani et al. | Jul 2006 | A1 |
20060158297 | Sutardja | Jul 2006 | A1 |
20060197510 | Chandrasekaran | Sep 2006 | A1 |
20070175701 | Xu et al. | Aug 2007 | A1 |
20070176726 | Xu et al. | Aug 2007 | A1 |
20070262840 | Matsutani et al. | Nov 2007 | A1 |
20070268104 | Chan et al. | Nov 2007 | A1 |
20080012674 | Sano et al. | Jan 2008 | A1 |
20080024259 | Chandrasekaran et al. | Jan 2008 | A1 |
20080150666 | Chandrasekaran et al. | Jun 2008 | A1 |
20080169769 | Lee | Jul 2008 | A1 |
20080205098 | Xu et al. | Aug 2008 | A1 |
20080303624 | Yamada et al. | Dec 2008 | A1 |
20090179723 | Ikriannikov et al. | Jul 2009 | A1 |
20090231081 | Ikriannikov | Sep 2009 | A1 |
20090237197 | Ikriannikov et al. | Sep 2009 | A1 |
20100007457 | Yan et al. | Jan 2010 | A1 |
20100013587 | Yan et al. | Jan 2010 | A1 |
20100271161 | Yan et al. | Oct 2010 | A1 |
20110018669 | Ikriannikov | Jan 2011 | A1 |
20110032068 | Ikriannikov | Feb 2011 | A1 |
20110035607 | Ikriannikov | Feb 2011 | A1 |
20110043317 | Ikriannikov | Feb 2011 | A1 |
20110148559 | Ikriannikov | Jun 2011 | A1 |
20110148560 | Ikriannikov | Jun 2011 | A1 |
20110169476 | Ikriannikov | Jul 2011 | A1 |
20110260822 | Ikriannikov | Oct 2011 | A1 |
20110279100 | Ikriannikov | Nov 2011 | A1 |
20110286143 | Ikriannikov | Nov 2011 | A1 |
20110286144 | Ikriannikov | Nov 2011 | A1 |
20120056704 | Nagano et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
922 423 | Jan 1955 | DE |
26 53 568 | Jun 1978 | DE |
3123006 | Jan 1983 | DE |
37 03 561 | Aug 1988 | DE |
101 05 087 | Aug 2001 | DE |
10 2006 034553 | Jun 2007 | DE |
0 012 629 | Jun 1980 | EP |
0 225 830 | Jun 1987 | EP |
0 577 334 | Jan 1994 | EP |
0 755 060 | Jan 1997 | EP |
1 519 392 | Mar 2005 | EP |
1 519 473 | Mar 2005 | EP |
1 632 964 | Mar 2006 | EP |
1 835 604 | Sep 2007 | EP |
1 950 773 | Jul 2008 | EP |
60-015908 | Jan 1985 | JP |
08-250332 | Sep 1996 | JP |
11 144983 | May 1999 | JP |
11 307369 | Nov 1999 | JP |
2002057049 | Feb 2002 | JP |
2005 310865 | Nov 2005 | JP |
WO 2006026674 | Mar 2006 | WO |
WO 2006109329 | Oct 2006 | WO |
WO 2009059069 | May 2009 | WO |
Entry |
---|
Magnetic Programmable Keyboard Encoder, IBM Technical Disclosure Bulleting, Jul. 1970. |
Pulse Product News Press Release dated Nov. 25, 2008, 1 page. |
U.S. Appl. No. 11/852,216, Response to Election/Restriction filed Jul. 14, 2009, 4 pages. |
U.S. Appl. No. 11/852,216, Requirement for Restriction/Election mailed Oct. 19, 2009, 6 pages. |
U.S. Appl. No. 11/852,231, Response to Election/Restriction filed Jun. 30, 2009, 7 pages. |
U.S. Appl. No. 11/852,231, Non-Final rejection mailed Oct. 6, 2009, 7 pages. |
U.S. Appl. No. 12/202,929, Requirement for Election/Restriction mailed Jun. 11, 2009, 7 pages. |
U.S. Appl. No. 12/202,929, Response to Election/Restriction filed Jul. 10, 2009, 3 pages. |
U.S. Appl. No. 12/987,944, Office Action issued Apr. 6, 2011, 7 pages. |
U.S. Appl. No. 12/987,944, Response to Office Action filed Sep. 23, 2011, 13 pages. |
U.S. Appl. No. 12/987,944, Office Action issued Feb. 3, 2012, 8 pages. |
U.S. Appl. No. 12/987,944, Response to Office Action filed Apr. 3, 2012, 8 pages. |
U.S. Appl. No. 12/987,944, Advisory Action issued Apr. 11, 2012, 3 pages. |
U.S. Appl. No. 12/987,944, Pre-Appeal Brief Conference Request filed May 3, 2012, 6 pages. |
U.S. Appl. No. 12/987,944, Notice of Panel Decision from Pre-Appeal Brief Review issued Jun. 18, 2012, 2 pages. |
U.S. Appl. No. 12/987,944, Appeal Brief filed Aug. 17, 2012, 14 pages. |
U.S. Appl. No. 12/987,944, Notice of Allowance issued Sep. 5, 2012, 7 pages. |
U.S. Appl. No. 12/271,497, Notice of Allowance dated Mar. 9, 2011, 5 pages. |
U.S. Appl. No. 12/271,497, Issue Fee Payment filed May 13, 2011, 1 pages. |
Chandrasekaran, S. et al., “Integrated Magnetics for Interleaved DC-DC Boost for Fuel Cell Powered Vehicles,” 35th Annual IEEE Power Electronics Specialists Conferences, 356-61 (2004). |
Dong et al., Twisted Core Coupled Inductors for Microprocessor Voltage Regulators, Power Electronics Specialists Conference, pp. 2386-2392, Jun. 17-21, 2007. |
Dong et al., The Short Winding Path Coupled Inductor Voltage Regulators, Applied Power Electronics Conference and Exposition, pp. 1446-1452, Feb. 24-28, 2008. |
Dong et al., Evaluation of Coupled Inductor Voltage Regulators, Applied Power Electronics Conference and Exposition, pp. 831-837, Feb. 24-28, 2008. |
Vishay, Low Profile, High Current IHLP Inductor, 3 pages, Jan. 21, 2009. |
Panasonic, Power Choke Coil, 2 pages, Jan. 2008. |
Cooper Bussmann, “Product Data Sheet for Low Profile Inductor (Surface Mount)” retrieved from http://www.angliac.com, May 2003. |
Papers received from Santangelo Law Office dated Dec. 22, 2006 and May 30, 2007. |
Pulse, SMT Power Inductors datasheet, 2 pages, Nov. 2007. |
Pulse, SMT Power Inductors Power Beads—PA0766NL Series; pp. 53-55; (date unknown). |
Vitec, Dual High Frequency High Power Inductor, AF4390A data sheet; date unknown. |
Wong, Pit-Leong, et al., “Investigating Coupling Inductors in the Interleaving QSW VRM” Applied Power Electronics Conference and Exposition, 2000. APEC 2000. Fifteenth Annul IEEE; Mar. 2000; pp. 973-978. |
Wong, Pit-Leong, et al.; A Novel Modelina Concept for Multi-coupling Core Structures; Center for Power Electronics Systems; IEEE. |
Wong, Pit-Leong, et al.; Performance Improvements of Interleaving VRMs With Coupling Inductors, IEEE Transactions on Power Electronics; vol. 16, No. 4; pp. 499-507; Jul. 2001. |
Xu, J., et al; Analysis by Finite Element Method of a Coupled Inductor Circuit Used as Current Injection Interface; IEEE; pp. 147-151; 1996. |
U.S. Appl. No. 11/929,827, Restriction Requirement mailed Aug. 18, 2008, 7 pages. |
U.S. Appl. No. 11/929,827, Response to Restriction Requirement filed Sep. 4, 2008, 3 pages. |
U.S. Appl. No. 11/929,827, Notice of Allowance mailed Oct. 21, 2008, 7 pages. |
U.S. Appl. No. 11/929,827, Issue Fee Payment and Comments on Statement of Reasons for Allowance, Jan. 21, 2009, 2 pages. |
U.S. Appl. No. 11/852,207, Restriction Requirement mailed Feb. 26, 2008, 7 pages. |
U.S. Appl. No. 11/852,207, Response to Restriction Requirement filed Mar. 26, 2008, 3 pages. |
U.S. Appl. No. 11/852,207, Office Action mailed Jun. 20, 2008, 7 pages. |
U.S. Appl. No. 11/852,207, Notice of Abandonment mailed Dec. 23, 2008, 2 pages. |
U.S. Appl. No. 10/318,896, Issue Fee Payment, Jan. 4, 2008, 1 page. |
U.S. Appl. No. 10/318,896, Supplemental Notice of Allowance, Dec. 13, 2007, 2 pages. |
U.S. Appl. No. 10/318,896; Notice of Allowance, Oct. 4, 2007, 4 pages. |
U.S. Appl. No. 10/318,896, Sixth Request for Acknowledgement of an Information Disclosure Statement, Jan. 4, 2008, 6 pages. |
U.S. Appl. No. 10/318,896; Statement of the Substance of Interview, Sep. 27, 2007, 2 pages. |
U.S. Appl. No. 10/318,896, Supplemental Amendment filed Sep. 14, 2007, 12 pages. |
U.S. Appl. No. 10/318,896, Response to Office Action mailed Jan. 18, 2007 and RCE; filed Jul. 18, 2007, 46 pages. |
U.S. Appl. No. 10/318,896, Statement of the Substance of Interview; filed Apr. 23, 2007, 2 pages. |
U.S. Appl. No. 10/318,896, Office Action mailed Jan. 18, 2007, 8 pages. |
U.S. Appl. No. 10/318,896, Petition to Review Restriction Requirement, filed Aug. 24, 2006, 89 pages. |
U.S. Appl. No. 10/318,896, Response to Office Action mailed Jun. 30, 2006; filed Oct. 25, 2006, 26 pages. |
U.S. Appl. No. 10/318,896, Office Action mailed Jun. 30, 2006, 6 pages. |
U.S. Appl. No. 10/318,896, Response to Office Action mailed Dec. 2, 2005; filed Mar. 24, 2006, 23 pages. |
U.S. Appl. No. 10/318,896, Office Action mailed Dec. 2, 2005, 7 pages. |
U.S. Appl. No. 10/318,896, Response to Office Action mailed Jun. 14, 2005; filed Sep. 14, 2005, 30 pages. |
U.S. Appl. No. 10/318,896, Office Action mailed Jun. 14, 2005, 9 pages. |
U.S. Appl. No. 10/318,896, Response to Office Action mailed Jun. 15, 2004; filed Aug. 16, 2004; 13 pages. |
U.S. Appl. No. 10/318,896, Office Action mailed Jun. 15, 2004, 6 pages. |
U.S. Appl. No. 10/318,896, Response to Office Action mailed Dec. 6, 2004; filed Feb. 7, 2005, 12 pages. |
U.S. Appl. No. 10/318,896, Office Action mailed Dec. 6, 2004, 5 pages. |
U.S. Appl. No. 11/852,231, Notice of Noncompliant Response dated Apr. 29, 2009, 3 pages. |
U.S. Appl. No. 11/852,231, Response to Restriction Requirement, filed Jan. 9, 2009; 3 pages. |
U.S. Appl. No. 11/852,231, Restriction Requirement mailed Dec. 11, 2008; 8 pages. |
U.S. Appl. No. 11/852,231, Response to Restriction Requirement, filed Sep. 2, 2008, 3 pages. |
U.S. Appl. No. 11/852,231, Applicant Interview Summary, Aug. 29, 2008, 2 pages. |
U.S. Appl. No. 11/852,231, Examiner Interview Summary mailed Aug. 6, 2008, 2 pages. |
U.S. Appl. No. 11/852,231, Restriction Requirement mailed Feb. 26, 2008, 7 pages. |
U.S. Appl. No. 11/852,231, Response to Restriction Requirement filed Mar. 26, 2008, 3 pages. |
U.S. Appl. No. 11/852,231, Notice of Noncompliant Amendment mailed Jul. 2, 2008, 3 pages. |
U.S. Appl. No. 11/852,216, Response to Restriction Requirement filed Jan. 22, 2009, 3 pages. |
U.S. Appl. No. 11/852,216, Restriction Requirement mailed Dec. 22, 2008, 7 pages. |
U.S. Appl. No. 11/852,216, Response to Restriction Requirement filed Mar. 26, 2008, 3 pages. |
U.S. Appl. No. 11/852,216, Restriction Requirement mailed Feb. 26, 2008, 7 pages. |
U.S. Appl. No. 11/852,216, Notice of Noncompliant Amendment mailed Jul. 7, 2008, 3 pages. |
U.S. Appl. No. 11/852,216, Response to Restriction Requirement filed Sep. 4, 2008, 3 pages. |
U.S. Appl. No. 11/852,226, Issue Fee Payment and Comments on Statement of Reasons for Allowance, Mar. 18, 2009, 2 pages. |
U.S. Appl. No. 11/852,226, Notice of Allowance mailed Dec. 18, 2008, 8 pages. |
U.S. Appl. No. 11/852,226, Response to Restriction Requirement filed Mar. 26, 2008, 7 pages. |
U.S. Appl. No. 11/852,226, Restriction Requirement mailed Feb. 25, 2008, 7 pages. |
U.S. Appl. No. 11/852,216, Notice re Non-Compliant Amendment mailed May 14, 2009, 3 pages. |
U.S. Appl. No. 12/271,497, Requirement for Restriction/Election mailed Jun. 11, 2009, 7 pages. |
U.S. Appl. No. 12/271,497, Response to Election/Restriction filed Aug. 11, 2009, 4 pages. |
PCT/US08/81886, International Search Report and Written Opinion mailed Jun. 23, 2009, 21 pages. |
PCT/US09/37320, International Search Report and Written Opinion mailed Jun. 20, 2009, 19 pages. |
U.S. Appl. No. 11/852,216, Response to Restriction Requirement filed Nov. 17, 2009, 3 pages. |
U.S. Appl. No. 12/202,929, Notice of Allowance mailed Dec. 24, 2009, 8 pages. |
U.S. Appl. No. 12/271,497, Non-final Rejection mailed Dec. 14, 2009, 7 pages. |
U.S. Appl. No. 12/344,163, Restriction Requirement mailed Dec. 11, 2009, 6 pages. |
U.S. Appl. No. 12/344,163, Response to Restriction Requirement filed Jan. 11, 2010, 4 pages. |
U.S. Appl. No. 11/852,231, Notice of Allowance mailed Mar. 26, 2010, 6 pages. |
U.S. Appl. No. 11/852,231, Response to Office Action filed Jan. 28, 2010, 17 pages. |
U.S. Appl. No. 12/344,163, Office Action mailed Mar. 22, 2010, 6 pages. |
U.S. Appl. No. 12/202,929, Issue Fee payment, Request for Acknowledgement of an IDS and Comments on Statement of Reasons for Allowance filed Feb. 11, 2010, 8 pages. |
U.S. Appl. No. 12/271,497, Response to Office Action filed Mar. 12, 2010, 11 pages. |
U.S. Appl. No. 11/852,216, Office Action mailed Aug. 5, 2010, 6 pages. |
U.S. Appl. No. 11/852,216, Response to Office Action filed Sep. 3, 2010, 3 pages. |
U.S. Appl. No. 11/852,231, Issue Fee Payment filed Jun. 28, 2010, 1 page. |
U.S. Appl. No. 12/271,497, Office Action mailed Jun. 25, 2010, 7 pages. |
U.S. Appl. No. 12/344,163, Response to Office Action filed Sep. 22, 2010, 9 pages. |
U.S. Appl. No. 12/392,602, Notice of Allowance mailed Oct. 18, 2010, 4 pages. |
U.S. Appl. No. 12/392,602, Response to Office Action filed Oct. 5, 2010, 15 pages. |
U.S. Appl. No. 12/392,602, Office Action mailed Apr. 5, 2010, 8 pages. |
U.S. Appl. No. 12/344,163, Notice of Allowance mailed Oct. 18, 2010, 4 pages. |
U.S. Appl. No. 12/71,497, Notice of Appeal and Pre-Appeal Brief Conference Request, filed Oct. 25, 2010, 8 pages. |
U.S. Appl. No. 11/852,216, Issue Fee Payment and Comments on Statement of Reasons for Allowance filed Oct. 13, 2010, 2 pages. |
U.S. Appl. No. 11/852,216, Notice of Allowance mailed Oct. 7, 2010, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20130113596 A1 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10318896 | Dec 2002 | US |
Child | 11852207 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12987944 | Jan 2011 | US |
Child | 13724246 | US | |
Parent | 12392602 | Feb 2009 | US |
Child | 12987944 | US | |
Parent | 11929827 | Oct 2007 | US |
Child | 12344163 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12344163 | Dec 2008 | US |
Child | 12392602 | US | |
Parent | 11852207 | Sep 2007 | US |
Child | 11929827 | US |