Method for manual dispensing using standardized packaging

Information

  • Patent Grant
  • 8393358
  • Patent Number
    8,393,358
  • Date Filed
    Wednesday, April 13, 2011
    13 years ago
  • Date Issued
    Tuesday, March 12, 2013
    11 years ago
Abstract
In one embodiment there is provided a system for recalculating a formula previously used in preparing a mixture made from adding at least two components. The system includes a control apparatus and scale. The control apparatus has a memory for storing the mixture formula. The scale, in communication with the control apparatus, allows the control apparatus to monitor a weight on the scale, such that a final weight of the mixture is stored on the memory. When an end weight of the mixture, defined to be the final weight of the mixture previously prepared minus an amount used by a user, is positioned back on the scale and when the control apparatus receives a recalculation signal, the control apparatus calculates the amount used, recalculates the mixture based on the amount used, and stores a new mixture for subsequent use.
Description
FIELD OF THE INVENTION

The present disclosure relates to a color management system for the manual combination of components to produce a desired mixture along with the management of the components, information, and businesses dealing with the same.


BACKGROUND OF THE INVENTION

The present disclosure can be used in various fields and have various applications. In one such field, namely, cosmetics and hair dye preparations, the current field packages hair dyes in small containers, including but not limited to various sizes of tubes and bottles. They further provide salons with recipe chart(s) that show how much of ingredient “A” is to be mixed with how much of ingredients “B” and “C” and “D” to produce the desired end color. To produce the desired color, the colorist must first locate the required ingredients. This can be a challenge unto itself at a busy salon with multiple colorists. In addition, with as many as 60 or more ingredients in each manufacturer's colorant lines, using the correct materials in the right amounts is very important. After selecting the color to be used, the next step is to squeeze or pour the approximate amounts of each ingredient into a mixing bowl. Various coarse measurement techniques are currently used, so there is very little control over the end product. This current method employed by most salons lacks precision and control and does not ensure correct results. Stock color recipes are listed on a color chart provided by the colorant manufacturer. Color formulations are often adjusted to suit a particular customer's needs. These custom colors are typically recorded on 3×5 cards or other manually prepared means and filed away for future reference. The drawbacks to this approach include: inaccurate volumetric measurements (“add ½ capful . . . ” “squeeze tube to line . . . ”); end results that are highly dependent on operator skill level or chance; no controls are available to monitor outcomes; hand-written customer records have no backups; and the whole process is devoid of meaningful information and control. Overall, this creates a cluttered, improper, and disorganized process totally devoid of accurate measurement.


Fully-automatic computer-controlled dispensers designed for hair coloring materials were introduced in the 1990's to address the weaknesses of the current hand-mixing process. Most of these models sold for $16,000 to $26,000, making these dispensers unaffordable for virtually all salons. These dispensers automatically measured the correct amount of each ingredient with great precision and a software database stored the stock color recipes as well as specially created blends and since the formulation and customer information were stored electronically, locating the required information was easy. Files could also be backed up so valuable customer history data was more secure and easily shared with other locations.


However, these earlier automatic dispensers had one very serious drawback, they required specially-designed internal storage bags for the various color components. These bags typically were designed to hold one quart and were specially constructed to eliminate the possibility of air infiltration, which could oxidize and ruin the dye. Unfortunately, the required bulk packaging further required manufacturers to incur very sizeable, multi-million dollar capital costs to add additional filling lines to produce the special bags. Additionally, major drawbacks of the automatic dispensers included their high cost, extreme complexity, high maintenance requirements, and as noted, their requirement that hair color producers incur high cost capital investments to meet the automatic dispensers' specialized packaging requirements. Therefore, there is a need for a much simpler, more cost-effective approach and which eliminates the drawbacks of earlier designs.


A number of other fields and applications face similar problems. When a person needs to blend or mix a number of components, the need to eliminate waste, create a cost-effective approach to aid the user, and provide a process that produces the desired mixture is highly desired. There is a need to provide a monitored approach, coupled with accurate measurement means to eliminate the potential for error and improve the overall accuracy, while producing accurate measurements, information to control the whole process.


SUMMARY OF THE INVENTION

One or more of the embodiments in the present disclosure aim to bring control to an otherwise un-controlled process at a substantial reduced cost (about $2500-$3500). One or more of the current embodiments solves problems that have existed but have never been solved since the development of professional hair coloring salons. The new monitored approach disclosed herein includes a computer driven system with precision scale, a computer-based recipe management system and optional storage to manage and protect blending ingredients, and will, if necessary, lock to minimize theft as well as a color management system for the combination of components to produce a desired mixture along with the management of the components, information, and businesses dealing with the same. Every color management system has a blending station with the company's proprietary color blending management software. The blending station includes a keyboard, LCD screen which may be a touch screen and a scale in communication with the computer to provide feedback on exactly how much of a each ingredient has actually been added to the batch. The computer driven system may also contain storage drawers or other receptacles to organize and store the individual blending components. Each receptacle may have an LED or other indicator to simplify product selection which is controlled by the computer driven system. Each receptacle may also have electronically controlled locking mechanisms, which are also driven by the system to reduce theft. In addition, the color management system can be enhanced with an optional bar code reader to verify the ingredients against the color recipe and to facilitate inventory control.


In one embodiment there is provided a color management system for preparation of mixture, such as, but not limited to, hair dye mixtures, personal care product mixtures, etc. The color management system includes a computer driven system having at least a memory, input controls, and a display. The memory has the capacity to store at least one mixture formulated from the mixing of one or more components, such as, but not limited to, colorants, dyes, and/or blending materials. The color management system also includes a scale communicating with the computer system, to monitors a weight on the scale and provides information on changes thereto. In addition, the computer system, upon receiving an input for a creation of a mixture, displays a formulation of the mixture indicating the component(s) and amount(s) needed to create the desired mixture.


In another aspect of the embodiment, there is provided a computer system that monitors changes in the weight on the scale and adjusts (i.e. reformulates) the formulation when a weight of a component manually added to the mixture is different (larger or smaller) than a recommended formulated amount and the computer system receives an input to adjust the formulas to the different weight of the component. The computer system may also monitor changes in the weight on the scale and displays a difference between a recommended formulated amount of a component and an amount of the component actually added to the scale. The differences displayed may also be measured down to a zeroed amount left to indicate how much additional of each other component is needed to be added to reach the recommended formulation. The computer system may also be linked to the salon's management software to exchange information on customers and formulas associated with particular customers. The computer system may store in the memory any changes in the formulation of the mixture. The computer system may also store in the memory any changes in the formulation of the mixture and send the changes in the formulation of the mixture to the salon's management software.


Yet in other aspects, the color management system may adjust the formulation of a mixture upon receiving an input on a total amount of mixture required or a strength of the mixture. Yet further aspects provides for receiving an input that the mixture is a custom color, custom color software acts to display a listing of components and blending materials, activates indicator(s) for particular selected component(s), monitors a separate amount and a total amount of the components placed in the bowl or other container, and stores a formulated mixture upon receiving an input the mixture is accepted and completed.


In another embodiment of the invention, the operator enters a customer name into the and the computer screen displays the customer's history, which may include the formulas stored and previously used for the customer. If this is a new customer, a history file is created and the operator selects desired components from a pallet chart, recipe book, or customer history file; enters the required amount of finished components and finally the activator strength is selected. The operator is instructed to place an empty batch container on the scale and the system then prompts the operator for the first component, and an LED or other indicator adjacent to the corresponding drawer is illuminated and/or the drawer is automatically unlocked and/or opened. The operator manually adds the amount indicated on the display panel, while the scale monitors exactly how much has been added and provides feedback to the operator as to when to stop adding, leading to an extremely accurate dispense. After returning the bottle or tube to the designated storage receptacle, the operator presses “next”, and may close and lock the storage receptacle and the next LED or other indicator is activated and the corresponding next receptacle is unlocked and/or opened to provide access to the next ingredient. Bar code readers can also be used to control the ingredient solution and control process. Afterwards a batch record is placed in the customer's history file.





BRIEF DESCRIPTION OF THE DRAWINGS

A fuller understanding of the foregoing may be had by reference to the accompanying drawings, wherein:



FIG. 1A is a perspective view of one embodiment of a system designed to control a manual process for mixing components, which includes a mixing station and optional storage receptacles;



FIG. 1B is a first and cross sectional view of the embodiment from FIG. 1A;



FIG. 2 is an enlarged view of a receptacle from FIG. 1A showing storage areas for the components;



FIG. 3 is a perspective view of one embodiment of the system designed to control a manual process for mixing components, illustrated the use on a pedestal;



FIG. 4 is a perspective view of one embodiment of the system designed to control a manual process for mixing components, illustrated the use of curved receptacle storage areas;



FIG. 5 is a perspective view of one embodiment of the system designed to control a manual process for mixing components, illustrated the use of receptacles with a change in the LED indicators;



FIG. 6 is an enlarged view of a receptacle from FIG. 5;



FIG. 7 is a perspective view of one embodiment of the system designed to control a manual process for mixing components, illustrated the use of slotted tubes as opposed to receptacles;



FIG. 8 is a perspective view of one embodiment of the system designed to control a manual process for mixing components, illustrated the use of slotted tubes as opposed to receptacles;



FIG. 9 is an enlarged view of the slotted tubes from FIG. 7 or FIG. 8;



FIG. 10 is a perspective view of one embodiment of the system designed to control a manual process for mixing components;



FIG. 11 is a perspective view of a bar code scanner used in one or more of the system embodiments;



FIG. 12 is a perspective view of one embodiment of the system designed to control a manual process for mixing components, illustrated a modular system with at least detached storage receptacles;



FIG. 13 is a block diagram illustrating the creation of a new hair dye formula;



FIG. 14 is a block diagram illustrating the creation of a custom color; and



FIG. 15 is a system illustration showing various software components and their relationship to the system;



FIG. 16 is a system illustration showing various software components and their relationship to the system;



FIG. 17 is a system illustration showing various software components and their relationship to the system;



FIG. 18 is a system illustration showing various software components and their relationship to the system;



FIG. 19 is a system illustration showing various software components and their relationship to the system;



FIG. 20 is an embodiment showing a particular bin structure capable of being included in the various system embodiments;



FIG. 21 is a perspective view of a system in accordance with an embodiment of the present disclosure; and



FIG. 22 is a screen shot of a color ingredient mixing system display.





DETAILED DESCRIPTION OF THE EMBODIMENTS

While the invention is susceptible to embodiments in many different forms, there are shown in the drawings and will described herein, in detail, the preferred embodiments of the present disclosure. It should be understood, however, that the present disclosure is to be considered an exemplification of the principles of the invention and is not intended to limit the spirit or scope of the invention, claims and/or embodiments illustrated.


In a first embodiment of the invention, there is shown and described a system designed to control a manual process for mixing components and which brings control to an otherwise un-controlled process. The components can be various ingredients to a mixture, such as, dyes used for blending hair dye mixtures, components used for blending personal beauty products, foods, etc. FIG. 1 shows one embodiment of the system, generally referenced as number 100. The system 100 includes organized storage of the components 110 (such as in one example, color blending ingredients), a computer-driven system 120, a small electronic scale 130 to be used in monitoring the mixing or blending process. In addition, the system may, but need not, include a self contained pump 140 to add common activators or ingredients, such as peroxides.


As shown in FIGS. 1-13, a number of different embodiments of the system 100 are illustrated. Each system 100 contains a number of drawers or receptacles 200 to organize and store the individual components, such as blending dye ingredient containers/tubes 205. Each receptacle/drawer 200 has an associated LED or other indicator 210 driven by the system 220. A small digital scale 130 is electrically connected to the system 220 to help provide feedback to the system 220 on exactly how much of a given ingredient or activator was added to the specific batch.


While not necessarily the preferred embodiment, it is possible to include several small reservoirs 225 of common ingredients, such as, bases and additives, stored within a storage area 230. The reservoirs 225 are coupled with metering pumps 235 to measure the common ingredients which eject from nozzles 237 into a mixture batch. Pumping channels 240 are also automatically controlled by the system 220. As illustrated, the common ingredients are either manually added or in the case of the above pumping system automatically pumped into a mixing bowl 245.


One embodiment would be as follows:


(a) an operator enters/views the customer name or other identifying characteristic into the system 220 via an integral keyboard 250 or touchpad and display panel 255;


(b) the system 220 has a memory storing customer information and/or history of the customer's mixtures, such as a specific or predefined color scheme; the system similarly allows editing, adding, and deleting of customer information or formula;


(c) the operator may either select a previously stored desired finished mixture or dye color from the customer history, or from an available list of known ingredients formulate a new formula;


(d) the operator is then prompted to enter the required amount of finished product (for example whether the operator needs 1 ounce, 2 ounces, etc. of different ingredients.


(d) the operator is then instructed to place an empty batch container or mixing bowl 245 on the scale 130;


(e) the system 220 will then illuminate or activate an LED or other type of indicator 210 adjacent to a corresponding receptacle/drawer prompting the operator to select the specific component needed for the mixture; optionally the system may control locking mechanisms on the receptacles to electronically open/close or lock/unlock the desired storage receptacles;


(f) the operator manually adds the amount of component that is indicated on the display panel 255 to the bowl 245; while the amount is being added, the computer system 220 monitors the scale 130 to determine exactly how much has been added; the display panel 255 indicates how close the addition is to the target weight by displaying how much more must be added and provides feedback to the operator, this may be done by graphic or other types of indicators as noted herein. In one aspect the graphic itself can be set such that regardless of the total amount that is needed (1 oz or 5 oz) the graphic will appear the same size on the display. The amount the graphic is filled will be scaled to accommodate the total amount needed. In comparison a graphic showing a 1 oz amount will fill at a faster rate than a graphic showing a 5 oz amount.


(g) after returning the component and closing the designated storage drawer/receptacle, the operator presses “next” (or any key specified by the computer system), and the next receptacle LED or other indicator is activated or illuminated or the drawer is unlocked along with the required amount of the next component or ingredient;


(h) steps (f) and (g) are repeated until all of the required components or color ingredients and activators have been added;


(i) once the batch has been completed, the precise amount of all ingredients are recorded into the customers history file.


Had this been a custom blended mixture, a separate software function would be selected. Under this function, the operator would tell the system which ingredients were being added or deleted, and the system would record the exact amount of each addition or deletion via the integrated scale. When the batch was complete, a record of the custom blend would be stored in the customer's history file.


It is herein noted that any type of computer system having a memory storage area, processor to run various programs, and other components well known in the computer industry can be used by the embodiments herein. The system can be wired or wirelessly communicating with the plurality of storage receptacles to control the LED or other indicators 210 or other lighting, electronic locks, opening/closing and/or sound elements to help identify the specific receptacle(s) the operator will be using and the required amount to be manually dispended to the bowl 245 to mix the specific components. Further, the system is wired or wirelessly communicating with the electronic scale 130 and the monitor 255 to identify and display to the operator how much of a specific amount of component needs to be added into the bowl 245 and wired or wirelessly communicating with the storage drawers when used.


On return visits, information stored would be available to precisely re-create the mixture. This concept revolutionizes the way a mixture is produced, and especially when applied to salons. It replaces a messy, uncontrolled mixing process with an easy-to-use, guided process to produce the exact mixture (such as an exact color of hair dye) time after time.


The systems can be configured in various manners. For example as illustrated in FIG. 1, the system is a counter-top model, while FIG. 3 shows a free standing model 270 with a stand 275 so the system can stand on the floor. FIG. 4 shows a corner top model 280 with storage receptacle areas 285 that have curved sections 290. In addition FIG. 22 shows a various embodiment of the system with storage receptacles or drawers. In FIGS. 5-6 an alternative system 300 is shown with receptacles 305 that include LED indicators 310 on the bottom of each receptacle (as opposed to in the center, shown in the previous embodiments). In addition, in each embodiment the storage receptacles can be an optional piece to the system inventions.


In FIGS. 7-9, a system 400 is shown that includes the same components and functionality as the previous embodiments, except the receptacles are replaced with opened drawer structures 405 that are secured into openings 410 on the side storage areas 415. The ends 420 of the tubes would include an LED indicator 425 controlled by the system 220.


The present embodiment has one or more of the following benefits over prior art systems: it eliminates mixing or blending errors; the system ensures accuracy; the simple, manual-controlled process produces perfect results regardless of operator's skill level or experience; the system maintains customer histories, so customer formulations can be precisely repeated time after time; using the system, even custom formulations are recorded for future reference; the system makes control independent of the operator, so should a colorist leave a salon, the exact color can be recreated; giving the salon greater control over customer retention or individual requests; the scale coupled with the control software can correct for over dispensed ingredients preventing wasted materials and off-shades; the system is compatible with current manufacturing processes and product packaging; the system brings tidiness and organization to an otherwise very messy process and would save counter space; and the control software can track material usage to help eliminate shrinkage, provide easier management reports, estimates future ingredient or inventory needs, and secures the materials and/or discourages employee theft.


Referring now to FIGS. 10 through 12, in another aspect the system would control a display to indicate a remaining weight required during the dispensing of the component. As the component is being added to the bowl 245, the display 255 indicates how much of the component remains to be added, by counting up or down to the target weight. Various kinds of analog indicators (discussed in greater detail below) can be displayed to more effectively communicate the remaining material to be added. When the operator presses “next” on the system, the system would illuminate the next LED (and/or opens the next drawer) and also recalibrate the scale to zero and indicate to the operator how much of the next component needs to be added. Again, as the operator adds the next component, the system leads the operator through the blending process.


An optional barcode scanner 450 could be provided to verify the correct component SKU prior to use and to facilitate inventory control. The bar code scanner may also help keep track of the product and make sure the operator is using the correct product. For example, if the system identifies a particular product in a particular receptacle, the operator after retrieving the product would scan the product. The system would check to make sure the actual product scanned is the correct product identified by the system for use. Other types of scanning equipment may be employed such as RFID scanners.


In other aspects of the invention, the system 475 may have separate receptacle storage areas 480, shown in FIG. 12, as a more modular system setup. The separate storage areas 480 and the main console area 475 would communicate either wirelessly or through wired connections. This would allow one or more consoles 475 to communicate and direct the receptacle storage areas 480 to turn on and off the LED or other indicators 485, in order to illustrate which receptacle to retrieve the required components 490; and keep track of the quantities of components for re-ordering purposes. In addition, it would thus be possible to just use a console without the storage receptacles.


In another embodiment, the system 100 may be used in conjunction with management software. The elements of a basic management package would be shared by the system application including the ability to access and share customer data, customer history, inventory data, and provide usage reports by stylist, customer, salon, store. This could be a separate solution linked to the present disclosure or completely integrated therewith as a single system.


The management software packages maintain basic customer data such as name, telephone number, email address, etc. History data would include service date, services provided, user, notes and perhaps photographs. The system may be able to maintain a separate dispense history file, but will be capable of sharing this information with the management software packages for inclusion with customer history records. In addition, the management software packages may have inventory modules, product usage would need to be reported.


Referring now generally to FIGS. 13 and 14 one or more of the present embodiments will be referenced in the given flow diagrams to illustrate various inputs and outputs from a given system and includes the use of a blending control software as described below.


In use with one or more of the present embodiments and an available management software, operation of the system could typically follow in the following steps:


(a) an operator may need to identify or log onto the system and then the operator enters the customer name or other identifying characteristic (ie telephone number, etc.) into the blending control software, BOX 500;


(b) the blending control software would act to control and display the customer's history information; However, if this is a new customer (BOX 505), the blending control software would permit the operator to create a new history file (BOX 510);


(c) the operator then selects desired components, BOX 515, from an available chart or pallet which is stored within a formulation database (BOX 520) (if the management software package has a chart or pallet database, the blending control software would be linked to it or in communication therewith so the chart or pallet could be read and interpreted by the blending control software;


(d) the blending control software then prompts for the required amount or size of finished component;


(e) the blending control software may then prompt for an activator strength;


(f) the stock color recipe is mathematically scaled for the desired batch size and the selected activator strength is displayed, BOX 525;


(g) the operator is prompted to place an empty mixing bowl on the scale;


The blending control software will compare actual weight of the bowl against a target range value—this range of values is to be user definable. If the set range is 0 to 0, the no validation will occur. The blending control software will contain a maximum weight for the mixing bowl to allow sufficient fluid capacity and stay below the maximum scale capacity. For example, if the maximum scale capacity is 1,200 grams, and the batch size calls for 600 grams of dye components, then the maximum possible weight of the mixing bowl would be 600 grams. However, to allow for batch correction capability, the calculation should assume a 50% dye component weight variation (I.e. of 600 grams, plus variation=900 grams leaving a maximum bowl weight of 300 grams) Enforcing a maximum bowl value ensures sufficient scale capacity for color mixing. Alternatively, the operator may simply be able to zero out the weight to ensure the system and scale are ready to continue.


(h) if the correct bowl weight value is achieved or the weight is zeroed out, the blending control software will prompt for the first component, BOX 530.


If the bowl is above the maximum allowable, a caution message should be displayed.


(i) as the first component is prompted, an LED or other indicator adjacent to the corresponding receptacle/drawer is activated so the operator can quickly locate the desired ingredient (for systems with optional storage system);


(j) if storage locks have been included, an unlocking signal is provided to a corresponding solenoid. For reference, this optional feature would only allow drawers which were un-locked by the blending control software to be opened. This provides two features: (a) prevent inventory theft and/or (b) force the operator to use the system—operators can't get inventory otherwise. This ensures that all transactions are recorded and properly accounted for in the system's history files. Similarly, the blending control software could actual open and or close the receptacles; or lock and unlock the drawers/receptacles with appropriate hardware and mechanics, all of which are well known;


(k) as noted above either the weight of the mixing bowl is internally recorded for use in measurement calculation or scale is zeroed out; a digital value of 0.0 grams is displayed to help the user begin added the first ingredient;


(l) the operator manually adds the amount indicated on the display panel, while the scale monitors exactly how much has been added and provides user feedback via the analog and/or digital indicators, BOX 535


(m) a color-coded analog bar-graph scale (or as noted below—other types of analog or non-digital displays or sounds can be used) is displayed that shows the progress of the first component being added. If an analog scale is used then as material is added, the analog bar-graph scale changes color from green to yellow, to orange and finally to red. Green being the starting point, yellow to indicate the operator is nearing the target weight, orange is very close, and red meaning stop; If other indicators are used the display or sounds will change accordingly.


(n) the blending control software will compare the actual dispensed amount to establish accuracy standards. When the calculated range of a sufficient amount of an ingredient has been reached, the ingredient will be considered complete and the display will turn red. If the volume added is greater than the maximum allowed value; the user will be prompted to “accept”, or “correct” the batch. If “correct” is selected, the total batch volume will be re-calculated based on the amount of the discrepancy, BOX 540. All corresponding weights will be increased accordingly. If other ingredients had been added to the batch prior to the over-dispense, the blending control software will automatically prompt the operator to add additional amounts of these ingredients as required. When the correct add has been completed, the operator is prompted to return the component to the storage receptacle/drawer (if applicable) and to close the drawer in order to continue.


(o) the blending control software would then prompt the operator to the next component by illuminating the LED adjacent to the corresponding receptacle/drawer. Similarly, if door locks have been included, and unlocking signal is provided to the corresponding solenoid.


(p) the current weight of the mixing bowl is internally recorded for use in measurement calculation and then zeroed out with a digital value of 0.0 grams being displayed to indicate that the blending control software is ready for the next ingredient. The operator repeats steps (l) through (n) for all manually weighed ingredients (BOX 545).


(q) if the blending control software is equipped with “automatic additive dispensing” the blending control software will automatically dispense the desired activator or base ingredients. The dispensing function is performed gravimetrically (using the scale). If more than one ingredient is to be added, they will be dispensed sequentially. Without automatic dispensing, the blending control software would simply prompt the user to add the appropriate activator or base ingredient and indicate the required amount as indicated for other ingredients in the previous steps.


(r) when all ingredients have been added, the operator will be prompted to remove the mixing bowl (Box 550); a database record is created with the precise amount of each ingredient dispensed and the record is stored in the history file (Box 555). A record containing the color name, amount, time and date is created and can be passed to the salon management software package and the salon management software package is then able to attach the information as a note to the custom record file.


(s) in addition, a record of the amount of each ingredient used will be maintained in the blending control software for inventory tracking purposes. The operator will have the ability to query the blending control software to determine the amount of each ingredient for a given time period. The blending control software should also be capable of passing usage values to the salon management software package if necessary.


In instances where the operator would be creating a new mixture for a customer (FIG. 14), the operator would have the option to create a new file (BOX 560), which would be selected to start the appropriate software section of the blending control software. The operation would follow similar steps to the above, except instead of notifying the operator which component to use, the blending control software would prompt the operator to select the first ingredient to dispense from an on-screen list of available components, such as listing available colors and/or additives (BOX 565). After the selection is made, an LED or other indicator adjacent to the corresponding receptacle is illuminated to provide the operator with an identification of where the component can be located (BOX 570). If door/drawer locks have been included, an unlocking signal is provided to the corresponding solenoid. After which locking signals, and even if desired opening and closing signals could be easily added.


The tare weight of the mixing bowl is internally recorded for use in measurement calculation, and a digital value of 0.0 grams is displayed with the bowl on the scale to indicate the blending control software is ready for an ingredient to be added. The operator manually adds the desired amount of the first ingredient, while the corresponding reference weight is displayed (BOX 575). When the addition is complete, the user selects “next”. The operator is prompted to return the component to the storage receptacle (if applicable) and to “Press any key to Continue.” (BOX 580). If door/drawer locks are used, the blending control software may automatically lock the drawer when the component is returned and the drawer closed by the operator or it may be automatically closed by the blending control software after the component is returned and the operator indicates that they would want to proceed. The display would show the name of the first ingredient, and the amount added to the formula. The operator is prompted to select the second ingredient from an on-screen list (BOX 585). If door/drawer locks have been included, and unlocking signal is provided to the corresponding solenoid. The tare weight of the mixing bowl is internally recorded for use in measurement calculation, and then zeroed out with a digital value of 0.0 grams displayed so the operator can add the next ingredient. The operator manually adds the desired amount of the second ingredient, while the corresponding reference weight is displayed. When the addition is complete, the user selects “next.” The display shows the names of the first two ingredients, and the amount of each added to the formula. This would continue until all of the required ingredients have been added. When the last ingredient has been added, the operator selects “done” (BOX 590). Upon completion, a total batch volume will be calculated based on the specific gravity of the individual ingredients. This value is stored for future reference to permit batch size scaling of the recipe. A database record is created with the precise amount and optimum target amount of each ingredient dispensed and is stored in the history file within the blending control software (BOX 595). A text record containing the name, amount, time and date is created and passed to the management software package to be attached as a note to the custom record file. A record of the amount of each ingredient used will be maintained in the blending control software for inventory tracking purposes. A simple query should be available to determine the amount of each ingredient for a given time period.


In addition, raw material inventory management functionality with and without the use of optional barcode equipment may be provided by one or more of the present embodiments. Barcode scanning devices simplify inventory management functions. By using an attached barcode scanner, mixing ingredients can be easily identified for inventory tracking purposes. The functions could be two-fold. One, an on-hand salon inventory could be established by scanning all available product inventory items. When new shipments are received, they too could be scanned thereby easily adding them to the on-hand inventory. Secondly, when blending control software is equipped with the optional storage receptacles, scanning the component could also be used to illuminate the appropriate lamp, or unlock the corresponding door. This functionality will help to ensure that the materials are properly stored and further minimizes the potential for selecting the wrong material during subsequent mixing operations.


In the case of a salon, the blending control software may also track the operator(s) use of the system which allows cost reporting by employee. It would also accurately track third-party billing for “chair rental” environments. In many salons, some of the stylists are not employees, but rather rent a chair from the salon owner. Sometimes a stylist renting a chair provides their own materials, such as hair color, and some utilize materials from the salon. Since the blending control software would know the exact amount of each ingredient included in a blend, it has the ability to establish the exact material cost for each batch. This data can be used to better understand service costs and can also be used to provide billing data for “rental chair” staff.


In additional embodiments, the blending control software can be provided with the ability to help eliminate waste. In salons, the user or stylists typically mix more than the required amount of components for their clients. The reasons are twofold: (a) current volumetric measurement systems do not allow for scaled down batches, and (b) it is difficult to estimate the actual amount of components or color required and they do not want to run out mid-application. One improved feature would allow the user or stylist to return the mixing bowl to the scale after finishing with the client. Since the weight of the bowl at the end of the mixing step was known when the mixture was produced, the blending control software can subtract the returned bowl weight from the final weight. It is then possible for the blending control software to know the amount of mixture actually used by the user or stylist during application. The client's master formula can then be adjusted to the actual amount used and if necessary an additional amount can be added for a defined safely factor, such as a 5% or 10%. On subsequent client visits, the re-scaled master formula, combined with the precision measurement capabilities of the blending control software virtually eliminates product waste.


In one embodiment there is provided, a system for recalculating a formula previously used in preparing a mixture made from adding at least two components. The system includes a control apparatus and a scale. The control apparatus has a memory (permanent and/or temporary), input controls, and a display. The memory being used to store a mixture formulated from mixing at least two components. The scale is in communication with the control apparatus. The control apparatus monitors a weight on the scale, such that a final weight of the mixture previously prepared from mixing at least two components is stored on the memory. In this embodiment, when an end weight of the mixture, defined to be the final weight of the mixture previously prepared minus an amount used by a user, is positioned on the scale and when the control apparatus receives a recalculation signal, a blending control software calculates the amount used, recalculates the mixture based on the amount used, and stores a new mixture for subsequent use. This helps reduce and eliminates extra waste.


This system embodiment can further be defined as a method for recalculating a formula. The method would provide a first step of providing a control apparatus having at least a memory, input controls, and a display, wherein the memory storing a mixture formulated from mixing at least two components. The next step would be providing a scale in communication with the control apparatus, such that the method stores on the memory a final weight of a mixture previously prepared from mixing at least two components. After use, the user would weigh on the scale an end weight of the mixture. The end weight of the mixture defined as the final weight of the mixture previously prepared minus an amount used by a user. Finally, the method recalculates the formula of the mixture based on the end weight of the mixture against the final weight of the mixture and stores the recalculated formula on the memory of the control apparatus.


In an additional embodiment, there is provided a system for preparing a mixture. The system includes a control apparatus having at least a memory, input controls, and a display. The memory has the capacity to store at least one mixture formulated from mixing of one or more components based on recommended formulated amounts of the one or more components. In communication with the control apparatus is a scale monitored by the control apparatus for changes of a weight on the scale. The control apparatus upon receiving an input for a creation of a mixture will display a formulation of the mixture indicating the component(s) and amount(s) needed to create the mixture, and the control apparatus will further monitor changes in the weight of the scale. Wherein, the control apparatus will adjust the formulation when a weight of a component added to the mixture is different than the recommended formulated amount.


In yet another embodiment there is provided a system for the storage and for the mixing of ingredient components to provide an operator the ability to create a mixture. The system is defined to include a plurality of storage receptacles; each receptacle holding at least one component and each receptacle in communication with a control apparatus. The control apparatus has at least a memory, input controls, and a display. The system improvement includes: (a) the memory having the capacity to store and/or storing at least one formulated mixture, which lists the component(s) and amount(s) thereof; (b) the control apparatus upon receiving an input for a creation of a mixture displays the formulated mixture indicating the component(s) and amount(s) needed to create the mixture; and (c) an electronic locking mechanism positioned at each storage receptacle, wherein the control apparatus upon receiving the input for the creation of the mixture is capable of sending a signal to the electronic locking mechanism to lock and/or unlock one or more receptacles relative to the component(s) being held therein to create the mixture.


Alternatively, each receptacle may have an opening position and a closing position. In this instances, each receptacle having the electronic mechanism positioned at each storage receptacle is set to open and/or close the storage receptacles. Therefore when the control apparatus receives the input for the creation of the mixture it is capable of sending a signal to the electronic locking mechanism to open and/or close one or more receptacles relative to the component(s) being held therein to create the mixture.


Referring now to FIG. 15, there is provided in various embodiments a blending control system 600 for manually preparing a hair dye mixture. The blending control system generally includes a control system having one or more of the following elements: (a) a memory 602, (b) input controls 604, and/or (c) a display 606. The blending control system further includes at least one formula 608 stored in the memory 602. The formula defines instructions of one or more colorants and/or dye blending materials and amounts recommended for manually recreating a hair dye mixture. The blending control system also includes a scale 610 in communication (wireless or wired) with the blending control system.


The blending control system in a first aspect of the various embodiments includes custom color software 612 to permit the user to create a custom color. The custom color software 612 upon receiving a manual input from the input control for a creation of a hair dye custom color mixture, will prompt a user to select or enter one or more colorants and/or dye blending materials 614 and monitors the scale for an amount corresponding to said one or more colorants and/or dye blending materials 616. The custom color software will create and store 618 a hair dye mixture formula based upon the selected or entered colorants and/or dye blending materials and the corresponding amounts that were placed on the scale. Various other aspects and uses of the custom color can be incorporated with the formula adjusting software used to adjust the formula of the hair dye mixture when a weight of a colorant or dye blending material being manually added to the scale is different than the amount recommended in the formula.


In a second aspect of the various embodiments, the blending control system includes validation software 620 to check a hair dye component package against the hair dye component(s) in the formula to ensure and validate a user is accurately manually recreating the hair dye mixture 622. The validation software may be used in connection with a bar-code scanner 624 to scan the bar codes positioned on the component package or used in connection with an RFID reader 626 to read information for an RFID tag positioned on the component package.


In a third aspect of the various embodiments, the blending control system includes salon management software 630 in communication with to the system to exchange information on customers and formulas of hair dye mixtures associated to said customers 632. In this aspect the blending control system could have the input control and the display in communication with the blending control system and software for displaying the instructions on said display in response to a manual input from the input controls and monitoring software to monitor a weight on the scale 634. The monitoring software aids in monitoring changes in the weight on the scale such that the blending control system is able to calculate a difference between a recommended formulated amount of a colorant or dye blending material and an actual amount of the colorant or dye blending material added to the scale. This difference can then be measured down to a zeroed amount, with an adjustment for the weight of a receptacle, such that the blending control system is able to indicate how much additional colorant or dye blending material is needed to be added to the scale to reach the recommended formulated amount of the colorant.


In a fourth aspect of the various embodiments, a blending control system includes progress control software 640 to indicate how much of one or more of the colorant(s) and/or dye blending material(s) from the hair dye mixture may be added to or removed from the scale. The progress control software can include an analog or non-digital display representation 642 of one or more of the colorant(s) and/or dye blending material(s) from the hair dye mixture, and the software capable of changing the representation to indicate an amount being added to or removed from the scale. The representation can be a graph, such as a bar-graph, circular, pictorial, or line graph and can be color corded or black/white, or gradation; alternatively it could use sound or other types of representations. The process control software can also include the ability to replay audible sounds 644 or lights representing the amount dispensed of one or more of the colorant(s) and/or dye blending material(s) from the hair dye mixture, and includes software to replay audible sounds or lights to indicate an amount being added to or removed from the scale.


In a fifth aspect of the various embodiments, the blending control system includes at least one set of customer information stored in said memory, such that the customer information 634 is associated with the at least one formula. The blending control system further includes software to update at least one set of customer information. And the blending control system can be linked to the salon management software to exchange customer information.


In a sixth aspect of the various embodiments, the blending control system includes software to store in the memory a final amount used of each of the one or more colorants and/or dye blending materials defined by the formula 650. In this aspect the blending control system may further include comparison software 652 to track the inventory 654 of the one or more colorants and/or dye blending materials by reducing a current inventory level of each of the one or more colorants and/or dye blending materials by the final amount used of each of the one or more colorants and/or dye blending materials. In addition, the comparison software used to track inventory levels and reduce the current inventory level by an amount used during the manual preparation of a hair dye mixture and/or increase the current inventory level by an amount received during a new shipment or returns of unused ingredients. Yet still, the amount reduced can further be allowed to track if a product is thrown out, spoiled, missing or otherwise needs to be reduced to ensure proper inventory levels. Yet as a further consideration, the amount used during the manual preparation of the hair dye mixture is determined by the amount on the scale. This could also be used to compare different stylist's, store's, or manufacturer's performances.


In a seventh aspect of the various embodiments, the blending control system has stored in said memory current inventory levels for at least one or more colorants and/or dye blending materials and the costs associated with each one or more colorants and/or dye blending materials. The blending control system further includes software to calculate the final cost 656 of a hair dye mixture by monitoring the manual preparation of the hair dye mixture including monitoring the scale for a final amount used of each of the colorants and/or dye blending materials defined by the formula, allocate a cost of each of used during the manual preparation and calculate the final cost by adding the individual costs. Once a final usage and/or cost is determined, color usage and/or cost can be reported by a reporting software. The reporting software will further be capable of creating reports for specified time periods on the material usage and cost based by stylist, client, salon or region (when the software are linked to other salons), manufacturer of a particular product or by product line, and/or chair or booth renter. The reporting software will further include components for determining average costs per client per treatment and other operating data.


Referring now to FIG. 16, there is provided in various embodiments a blending control system 700 for manually preparing a hair dye mixture. The system generally includes one or more of the following elements: (a) a memory 702, (b) input controls 704, and/or (c) a display 706. The system further includes at least one formula 708 stored in the memory 702. The formula defines instructions of one or more colorants and/or dye blending materials and amounts recommended for manually recreating a hair dye mixture. The system also includes a scale 710 in communication (wireless or wired) with the system.


The system in an eighth aspect of the various embodiments includes software that permits for formula blending and adjustments. As mentioned above, this could include reformulating a formula based on changing a particular quantity of an ingredient such as adjusting for adding too much or not enough of an ingredient. Separately, this could also include the ability to add or remove a particular ingredient from a formula, or swap or change a particular ingredient with another component. A formula adjustment software 720 would receive an indication from the input control that either an additional ingredient is being added or an ingredient from the formula is being removed 722. The formula adjustment software 720 will then adjust the final total and/or in some circumstances may recalculate the formula to adjust for the increased batch size or strength of the mixture. The user would then not be required to start over with a new customer mixture. In another aspect, a particular ingredient may need to be changed or swapped out for a different ingredient 724. Changing a particular ingredient may be done because the particular ingredient is missing from inventory. For example, if a shade of red is out of stock the stylist may know that they can combine certain other colors for the desired effect. The formula adjustment software will adjust the final total and/or in some circumstances may recalculate the other components of the formula to adjust for the increased batch size or strength of the mixture.


In other aspects, the formula adjustment software 726 can be capable of converting a particular formula from one brand of product to another brand 728. For example, if a particular mixture of colors in one brand needs to be duplicated for a different brand, the particular ingredients may be different. A formula brand conversion would permit the operator to recreate the mixture using different branded products. If provided with the system, once converted, the system would also control the correct receptacle or drawer to unlock, open, and/or indicated (by LED or other means) 730. In another aspect, the formula adjustment software 726 may include a particular manufacturers standard book of colored mixtures 732. This permits the user to start with a base line formula that may be adjusted and customized for a particular client.


It is further noted that the blending control system has further built in a defined tolerance component 734 towards the target total amount needed for the particular ingredient or total mixture. When adding a particular ingredient it has been found that within a certain small tolerance of being over or under the target amount does not necessarily effect the end mixture. This tolerance has a tendency to be about 1-2 percent over or under the recommended value in the formulas; however it is possible that the tolerance level can be manually set by the salon, operator, manager, manufacturer of the product, or etc. To help a particular user identify the tolerance, the progress indicator may include a Target Line 736 to which the user may attempt to achieve for a perfect mixture but then it may further include a Tolerance Indication 738 above and below the Target Line that the user will identify as a region that if the ingredient weight added reaches within the Tolerance Indication, the user can move on to the next ingredient without reformulating the entire mixture. The Tolerance Indication may be visual or audible 740 and if visual may be represented as lines or brackets above and below the Target Line, see also FIG. 22.


In a ninth aspect of the present embodiments, the blending control system can include various aspects to increase an operator's ease of use 742. Various technological components can be provided, such as touch screens 744 and wireless keyboards/mouse. Employee Identification systems 746 may also be used to correctly identify an employee and provide the employee with the appropriate access to the blending control system. Various employee identification systems may be used, such as but not limited to magnetic card scanners; fingerprint scanners; barcode readers; password protection. The employee identification systems can also be used in connection with the below information management systems with its layered security measures to correctly identify personal with specific access to certain areas in the blending control system.


Other aspects of the systems ease of use include an ability to automatically convert a product packaging units to a single system 748. Various packages may have volume and weight in various scales. The system having the information entered into the blending control system based on the particular product will covert the unit to a single system used by the operator. The single system may be done as a weighted system. Alternatively, since the progress indicator system is provided, the indicator may itself be viewed as the single unit system.


The system's ease of use can be further implemented by provided with its step by step guidance on screen instructions and warnings if the operator is adding too much of a particular ingredient or warnings if the operator is using the incorrect ingredient. The warnings and instructions can be augmented with the system's ability to control the opening or unlocking of a particular storage area or bin.


In a tenth aspect of the invention, the blending control system may be further provided with an information management structure 812. Various software components used to manage the information in the blending control system which may or may not include information in the salon management system. As noted above the salon management system and the blending control system may be a single system or separate systems linked or communicated together. The blending control system 800 is generally provided for manually preparing a hair dye mixture. The blending control system generally includes a computer-drive system having one or more of the following elements: (a) a memory 802, (b) input controls 804, and/or (c) a display 806. The blending control system further includes at least one formula 808 stored in the memory 802. The formula defines instructions of one or more colorants and/or dye blending materials and amounts recommended for manually recreating a hair dye mixture. The blending control system also includes a scale 810 in communication (wireless or wired) with the system. An information management system 812 is provided and is in communication with the blending control system 800.


The information management system 812 includes one or more components either used in concert or separately. A first component of the information management system may be directed to information about the customer or client information and their associated formulation(s). The blending control system would be able to prepare a Formula Card 814 that a customer or stylist could use at another location. The Formula Card would help the second or subsequent stylist recreate the mixture at another location if for example the other location was not linked to the blending control system. A second component of the information management system 812 would include the ability to color forecast 814. Color forecasting 814 is the ability to forecast the amount of color needed in a particular period. The forecasting can be based on a number of factors such as historical color usage, scheduled appointments and the client history, and/or promotions done by a salon. The color or ingredients in the formula is forecasted by reviewing the factors and generating a report that could include purchase orders.


A third component of the information management system 812 is the ability to generate purchase orders 816. Purchase orders 816 for particular ingredients can be generated based on color usage forecasts and real-time inventory levels, which as mentioned can be monitored and tracked by other component systems. Purchase orders 816 can also be based on reorder point levels. With the purchase orders, the blending control system would be able to create open order reports 818 and transmit the orders automatically 820 to vendors via e-mail.


In a fourth component of the information management system 812, new inventory updates 822 can be obtained when a new inventory is taken and entered into the system. Entering the inventory can be done by scanning codes or manual entry into the blending control system. The new inventory received can also be compared 824 to the purchase orders and usage report to determine the accuracy of the orders and reports.


Referring now to FIG. 18, in a fifth component of the information management system 812, various Reports 830 can be generated to help the management of the system and salon(s). With detailed records on the clients and their use of the salon services, Reports showing the number or percentage of clients that use coloring services and the frequency of their use or absence can be obtained 832. Reports which show a calculation of the inventory shrinkage in concert with the physical inventory can be obtained 834. Along with this aspect a Report on the savings due to a reduction inventory shrinkage for a time period can be generated 836. As well as a generated Report on the savings from the above noted waste reduction measure as compared to a pre-defined normal amount used for a period of time 838. Reports can also be generated to help the salon determine use charges 840, for example suggested charges can be generated for excessive amount of ingredients used, i.e. if a double or triple batch is prepared because of the length or thickness of the hair. These reports can also be exported through an intra or internet for a manager 842 to analyze trends over a period of time. These reports can also be consolidated amount multiple salons, regionally or for a nationwide report.


Along with various reports, the blending control system can also include an operating statistic component 844. The operating statistics can be based on a number of various factors either alone or in combination with each other. These factors include an average color batch by the operator/stylist 846; average cost per client 848; comparison of color services per hour, per appointment against default predetermined values 850; comparison of the number of single versus double color applications 852; comparison of the number of on-scalp or off-scalp applications 854; comparison on individual batch sizes to salon norms and flag deviations 856; comparison of batch sizes deviated to pricing surcharges 858; and comparison pricing of specific application against normal procedures 860.


Other Reports can be based and generated to provide information on a number of salons owned by a single entity. The information can be sorted and detailed based on the aggregate of all the salons or based upon a specific city, region, or country.


Since the information management system is capable of tracking inventory Reports can be generated to help outline the higher turn ingredients as well as show the slowing moving or dormant ingredients. Reports can also be generated to allocate usage between normative uses for a given time period and waste over the same time period.


The blending control system can further track purchase incentive programs 862 by monitoring items purchased in the store against the products used by the stylists. With full client information in the blending control system including the brand or specific ingredients used, specific promotions of retail products can be determined and recommended to the client, as well as promotions for specific salon services that are also based on specific products purchased, used, or applied.


Referring now to FIG. 19, in an eleventh aspect of the invention, the blending control system may be further provided with an communication and data sharing components. Various software components used to communication and share data may or may not include information in the salon management system. The blending control system 900 is generally provided for manually preparing a hair dye mixture. The blending control system generally includes a computer-driven system having one or more of the following elements: (a) a memory 902, (b) input controls 904, and/or (c) a display 906. The blending control system further includes at least one formula 908 stored in the memory 902. The formula defines instructions of one or more colorants and/or dye blending materials and amounts recommended for manually recreating a hair dye mixture. The blending control system also includes a scale 910 in communication (wireless or wired) with the system. An communication and data sharing system 912 is provided and is in communication with the system 900.


In a first component of the communication and data sharing system 912 software would allow the blending control system 900 to communicate with a main server 920 to provide updates against a manufactured and/or installed system. Updates and upgrades 922 to the software can be done by internet login into a main server. In addition, software installation and setup 924 can also be done over the internet. The main server 920 when in communication with the blending control system 900 could help diagnose and repair 926 any maintenance issues with the blending control system, as well as provide data backup capabilities 928. If the systems are licensed for use, the main server could maintain the licenses which if not updated and renewed could lock out the system for control by the salons.


In a second component, as mentioned above the blending control system and the salon management system can be integrated or linked together to allow the sharing of information. The information shared between the two or more systems 900 could include data on the stylists, appointment information, point of sale service ticket information, and formula data for new and existing clients, as well as modified formula information.


If multiple systems 900a, 900b, etc., are employed in a single salon or multiple salons each system can be connected to each other to share and consolidate information. Multiple salon applications can use a dedicated connection IP address or across the internet 930. The information shared can include inventory data, cost data, usage data, employee data, customer data, and formula data.


Turning now to FIG. 20, there is shown modular shelf units 1000 which can be used in connection with a manual hair dye system. The modular shelf units 1000 include a plurality of shelf openings 1050 to accommodate drawers 1100 that slide outwardly towards the user to open. The drawers 1100 include a glide or channel 1150 that receives opposing pins 1170 that protrude from the front of the openings. The channel 1150 includes a curved section 1200 near the back region of the drawer. The curved section 1200 curves such that an end 1250 of the channel 1150 is positioned near the back lower region of the drawer. Thus when the drawer is pulled out, it can swing or pivot downwardly. The drawer can have various sections 1300, 1320 to help organize and sort the product placed therein.


As further shown the drawer can have a front lower lip region 1400 that covers a fixed indicator light 1450 or LED positioned in the shelf openings. The front lower lip region 1400 may have transparent or translucent qualities, such that when the drawer is fully closed and the light is turned on, the user would be able to see the light through the front lower lip region 1400.


Referring now to FIG. 21 there is shown from various components a blending control system 600 is generally provided for preparing a hair dye mixture. The blending control system generally includes a computer-driven system having one or more of the following elements: (a) a memory, (b) input controls 604, and/or (c) a display 606. The blending control system further includes at least one formula stored in the memory. The formula defines instructions of one or more colorants and/or dye blending materials and amounts recommended for recreating a hair dye mixture. The blending control system also includes a scale 610 in communication (wireless or wired) with the system. The blending control system further includes bins in communication with the blending control system. As explained above, the receptacles may include indicators and/or locks.


It is further provided that the above noted software functions are defined to be created within a single or multiple software components. These components can be designed to work together regardless of the software language used to create the functions. Furthermore, the software would be specifically configured to perform the functions in order to impart structural elements into the software and the embodiments disclosed herein.


In one further embodiment, there is provided a method for preparing a hair dye mixture, either manually, semi-manually, or automatically as defined above. The method to be performed would use a scale and control system in communication with each other. The control system provides for a memory and a display, with the memory containing a formula defining instructions for blending a hair dye mixture. The instructions are displayed on the display for a stylist or user to perform the various steps which include viewing the display of instructions and then following the instructions by adding to a receptacle on the scale, colorant(s) and dye blending material(s) in accordance with the instructions. The embodiment uses a hair color manufacturer's standardized packaging, such that non-standardized or specialized packaging of colorants and/or dye blending materials are not required. Terminology is as defined above.


In other aspects of this embodiment, the method continues with the steps of viewing the display of an analog representation of an amount of one or more of the colorant(s) and/or dye blending material(s) which has been added to the receptacle. The analog representation further indicating pre-defined tolerances above and below a recommended amount defined by the formula. Based thereon, the stylist adds to and/or remove from the receptacle colorant or dye blending material until the analog representation indicates the amount in the receptacle is within the pre-defined tolerances. In addition, the analog representation may further include lights, sounds, and/or graphics.


Other aspect of this embodiment may include the step of validating the colorant and/or dye blending material being adding to the receptacle by comparing the hair color manufacturers' standardized retail packaging against the formula. The validating step may include using a scanner to scan the hair color manufacturers' standardized retail packaging and checking the display for an indication that the scanned hair color manufacturers' standardized retail packaging is listed by the formula. In yet other aspects, the method may include the stylist accepting a weight of a colorant or dye blending material in the receptacle on the scale, and then adding additional colorant(s) or dye blending material(s) to the receptacle on the scale in response to the control system displaying an adjusted formula calculated by the control system. The adjusted formula is based on the accepted weight of the colorant or dye blending material in the receptacle when the accepted weight is different than an a recommended amount defined by the formula.


In addition, the stylist may verify and accept a weight of a colorant or dye blending material in the receptacle on the scale, prior to adding subsequent colorant(s) or dye blending material(s) to the receptacle on the scale in accordance to the formula. The stylist may also weigh the receptacle on the scale, when the receptacle holds a remaining amount of colorant and/or dye blending material (after use). The remaining weight is defined to include a only portion of the colorant and/or dye blending material previously prepared in accordance with the instructions. In this instance, the control system is capable of revising the stored instructions based on the remaining amount of colorant and/or dye blending material in the receptacle compared to an amount of colorant and/or dye blending material previously prepared.


From the foregoing and as mentioned above, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the novel concept of the invention. It is to be understood that no limitation with respect to the specific methods and apparatus illustrated herein is intended or should be inferred. It is, of course, intended to cover all such modifications.

Claims
  • 1. A method for manually preparing a hair dye mixture, the method using a scale and control system in communication with each other, the control system including a memory and a display, the memory containing a formula defining instructions for blending a hair dye mixture using one or more colorants and/or dye blending materials and amounts recommended for producing a pre-defined batch size of the hair dye mixture, wherein the instructions are displayed on said display, the method comprising: displaying the instructions for producing the hair dye mixture on the display;monitoring a weight on the scale as colorant(s) and/or dye blending material(s) are added to a receptacle on the scale in accordance with said instructions while using current product packaging that does not have specialized packaging requirements;recalculating the formula of the hair dye mixture for an adjusted batch size when an input received by the control system indicates an amount that is different than an amount recommended in the formula for the pre-defined batch size; anddisplaying the recalculated formula on the display for the adjusted batch size, thereby preventing excess hair dye mixture from being produced and spoiling due to oxidation.
  • 2. The method of claim 1, further comprising: displaying a representation of an amount of one or more of the colorant(s) and/or dye blending material(s) which has been added to the receptacle, said representation further indicating pre-defined tolerances above and below a recommended amount defined by said formula; andadding to and/or removing from the receptacle colorant or dye blending material until the representation indicates the amount in said receptacle is within said pre-defined tolerances.
  • 3. The method of claim 2, wherein the analog representation includes lights, sounds, and/or graphics that indicate when the colorant or dye blending materials are within the tolerances.
  • 4. The method of claim 1, further comprising: validating the colorant and/or dye blending material being adding to the receptacle by comparing a hair color manufacturer's product packaging being used against the hair dye products in the formula to ensure and validate accurate production of the hair dye mixture.
  • 5. The method of claim 4, wherein the validating of the colorant and/or dye blending material being adding to the receptacle includes using a scanner to scan the hair color manufacturer's product packaging and checking the display for an indication that said scanned hair color manufacturer's product packaging is listed by the formula.
  • 6. The method of claim 1, further comprising: accepting a weight of a colorant or dye blending material in the receptacle on the scale; andmonitoring a weight on the scale as additional colorant(s) or dye blending material(s) are added to the receptacle on the scale in response to the control system displaying a recalculated formula for the adjusted batch size calculated by the control system, the recalculated formula being based on the accepted weight of the colorant or dye blending material in the receptacle when the accepted weight is different than a recommended amount defined by the formula for producing the pre-defined batch size.
  • 7. The method of claim 1, further comprising: verifying and accepting a weight of a colorant or dye blending material in the receptacle on the scale, prior to adding subsequent colorant(s) or dye blending material(s) to the receptacle on the scale in accordance to the formula.
  • 8. The method of claim 1, further comprising: weighing the receptacle on the scale, when the receptacle holds a remaining amount of colorant and/or dye blending material defined to include a portion of said colorant and/or dye blending material remaining after application on a customer's hair; andrecalculating the formula for a reduced batch size based on the remaining amount of colorant and/or dye blending material in the receptacle by reducing the amount of colorant and/or dye blending material from the pre-defined batch size.
  • 9. A method for preparing a hair dye mixture, the method using a scale and a control system in communication with each other, the control system including a processor, a memory, and a display, wherein the memory contains software configured to receive a formula defining instructions for blending a hair dye mixture using one or more colorants and/or dye blending materials and amounts recommended for producing a pre-defined batch size of the hair dye mixture, the method comprising: displaying the instructions for producing the hair dye mixture on the display;monitoring a weight on the scale as colorant(s) and/or dye blending material(s) are added to a receptacle on the scale in accordance with said instructions; andrecalculating information associated with the hair dye mixture when an input received by the control system indicates an amount that is different than an amount recommended in the formula for the pre-defined batch size; anddisplaying the recalculated information associated with the hair dye mixture on the display.
  • 10. The method of claim 9, further comprising: displaying a representation of an amount of one or more of the colorant(s) and/or dye blending material(s) which has been added to the receptacle, said representation further indicating pre-defined tolerances above and below a recommended amount defined by said formula; andmonitoring a weight on the scale as colorant(s) and/or dye blending material(s) are added to the receptacle until the representation indicates the amount in said receptacle is within said pre-defined tolerances.
  • 11. The method of claim 10, wherein the representation includes lights, sounds, and/or graphics that indicate when the colorant or dye blending materials are within the tolerances.
  • 12. The method of claim 9, further comprising: validating the colorant and/or dye blending material being adding to the receptacle by comparing a hair color manufacturer's product packaging being used against the hair dye products in the formula to ensure and validate accurate production of the hair dye mixture.
  • 13. The method of claim 12, wherein the validating of the colorant and/or dye blending material being adding to the receptacle includes using a scanner to scan the hair color manufacturer's product packaging and checking the display for an indication that said scanned hair color manufacturer's product packaging is listed by the formula.
  • 14. The method of claim 9, further comprising: accepting a weight of a colorant or dye blending material in the receptacle on the scale; andmonitoring a weight on the scale as additional colorant(s) or dye blending material(s) are added to the receptacle on the scale in response to the control system displaying a recalculated formula for the adjusted batch size calculated by the control system, the recalculated formula being based on the accepted weight of the colorant or dye blending material in the receptacle when the accepted weight is different than a recommended amount defined by the formula for producing the pre-defined batch size.
  • 15. The method of claim 9 further comprising verifying and accepting a weight of a colorant or dye blending material in the receptacle on the scale, prior to adding subsequent colorant(s) or dye blending material(s) to the receptacle on the scale in accordance to the formula.
  • 16. The method of claim 9, further comprising: weighing the receptacle on the scale, when the receptacle holds a remaining amount of colorant and/or dye blending material defined to include a portion of said colorant and/or dye blending material remaining after application on a customer's hair; andrecalculating the formula for a reduced batch size based on the remaining amount of colorant and/or dye blending material in the receptacle by reducing the amount colorant and/or dye blending material from the pre-defined batch size, thereby preventing excess hair dye mixture from being produced and spoiling due to oxidation.
  • 17. The method of claim 9, wherein the hair color manufacturer's product packaging being used is current product packaging that does not have specialized packaging requirements.
  • 18. The method of claim 9, wherein the recalculated information associated with the hair dye mixture includes a first graphic indicator on the display, wherein the first graphic indicator informs a user of the dispensed weight of a first ingredient based on the weight measured by the scale by dynamically graphically filling the first graphic indicator with a progress graphic corresponding to the dispensed formula weight of the first ingredient.
  • 19. The method of claim 18, wherein the recalculated information associated with the hair dye mixture includes a second graphic indicator on the display, wherein the second graphic indicator informs the user of the dispensed weight of a second ingredient based on the weight measured by the scale by dynamically graphically filling the first graphic indicator with a progress graphic corresponding to the dispensed formula weight of the second ingredient.
  • 20. The method of claim 19, wherein the first and second graphic indicators are the same shape with the same dimensions.
  • 21. The method of claim 19, wherein the first and second graphic indicators have different virtual volumes.
  • 22. A method for preparing a hair dye mixture, the method using a scale and a blending control system in communication with each other, the blending control system including a processor, a memory, and a display, wherein the memory contains software configured to receive a formula defining instructions for blending a hair dye mixture using one or more colorants and/or dye blending materials and amounts recommended for producing a pre-defined batch size of the hair dye mixture, the method comprising: displaying the instructions for producing the hair dye mixture on the display, including recommended amounts of the colorant(s) and/or dye blending material(s) to be added to the scale;monitoring a weight on the scale as colorant(s) and/or dye blending material(s) are added to a receptacle on the scale in accordance with said instructions;indicating on the display the recommended amounts of the colorant(s) and/or dye blending material(s) in comparison to the amounts that have been added to the scale;validating the colorant(s) and/or dye blending material(s) being adding to the receptacle by comparing a hair color manufacturer's product packaging being used against the colorant(s) and/or dye blending material(s) in the formula to ensure and validate accurate production of the hair dye mixture, wherein the hair color manufacturer's product packaging being used is validated as current product packaging that does not have specialized packaging requirements.
  • 23. A method for preparing a hair dye mixture, the method using a scale and a blending control system in communication with each other, the blending control system including a processor, a memory, and a display, wherein the memory contains software configured to receive a formula defining instructions for blending a hair dye mixture using one or more colorants and/or dye blending materials and amounts recommended for producing a pre-defined batch size of the hair dye mixture, the method comprising: displaying the instructions for producing the hair dye mixture on the display, including recommended amounts of the colorant(s) and/or dye blending material(s) to be added to the scale;monitoring a weight on the scale as colorant(s) and/or dye blending material(s) are added to a receptacle on the scale in accordance with said instructions;indicating on the display the recommended amounts of the colorant(s) and/or dye blending material(s) in comparison to the amounts that have been added to the scale;converting a first formula defining instructions for blending a hair dye mixture using colorants and/or dye blending materials as ingredients into a second formula that recreates the hair dye mixture of the first formula using different ingredients for one or more of the colorants and/or dye blending materials, wherein the ingredients of the first formula and the ingredients of the second formula are from a same hair color manufacturer's brand.
  • 24. A method for preparing a hair dye mixture, the method using a scale and a blending control system in communication with each other, the blending control system including a processor, a memory, and a display, wherein the memory contains software configured to receive a formula defining instructions for blending a hair dye mixture using one or more colorants and/or dye blending materials and amounts recommended for producing a pre-defined batch size of the hair dye mixture, the method comprising: displaying the instructions for producing the hair dye mixture on the display, including recommended amounts of the colorant(s) and/or dye blending material(s) to be added to the scale;monitoring a weight on the scale as colorant(s) and/or dye blending material(s) are added to a receptacle on the scale in accordance with said instructions;indicating on the display the recommended amounts of the colorant(s) and/or dye blending material(s) in comparison to the amounts that have been added to the scale;converting a first formula defining instructions for blending a hair dye mixture using colorants and/or dye blending materials of a first hair color manufacturer's brands as ingredients into a second formula that recreates the hair dye mixture of the first formula using different ingredients for one or more of the colorants and/or dye blending materials that are of one or more different hair color manufacturer's brands.
  • 25. The method of claim 1, wherein recalculating the formula for an adjusted batch size comprises maintaining a ratio between ingredients of the hair dye mixture while adjusting a batch size of the hair dye mixture.
  • 26. The method of claim 9, wherein recalculating the formula for an adjusted batch size comprises maintaining a ratio between ingredients of the hair dye mixture while adjusting a batch size of the hair dye mixture.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority to U.S. Application 61/552,553 filed Feb. 14, 2011 and is a continuation in part application of U.S. patent application Ser. No. 12/986,448 filed Jan. 7, 2011, which is a continuation in part of 12/849,427 filed Aug. 3, 2010, which is continuation in part application of U.S. patent application Ser. No. 12/396,050 filed Mar. 2, 2009, which is a non-provisional application of both U.S. Provisional Application Ser. No. 61/033,053 filed Mar. 3, 2008 and U.S. Provisional Application Ser. No. 61/115,960 filed Nov. 19, 2008; all of which are hereby incorporated by reference.

US Referenced Citations (39)
Number Name Date Kind
3122272 Marsh Feb 1964 A
4046287 Hoekstra et al. Sep 1977 A
4469146 Campbell et al. Sep 1984 A
4637527 Arrigoni Jan 1987 A
4656600 Swann Apr 1987 A
4705083 Rossetti Nov 1987 A
4792236 Heinis et al. Dec 1988 A
4967938 Hellenberg Nov 1990 A
5078302 Hellenberg Jan 1992 A
5119973 Miller et al. Jun 1992 A
5193720 Mayberry Mar 1993 A
5268849 Howlett et al. Dec 1993 A
5328057 Hellenberg et al. Jul 1994 A
5365722 Edwards et al. Nov 1994 A
5368196 Hellenberg et al. Nov 1994 A
5474211 Hellenberg Dec 1995 A
5493840 Cane Feb 1996 A
5511695 Chia et al. Apr 1996 A
5558251 Neri Sep 1996 A
5632314 Koppe et al. May 1997 A
5697527 Altieri, Jr. et al. Dec 1997 A
5711458 Langeveld et al. Jan 1998 A
5784854 Mazzalveri Jul 1998 A
5855626 Wiegner et al. Jan 1999 A
5862947 Wiegner et al. Jan 1999 A
5938080 Haaser et al. Aug 1999 A
5992691 Post et al. Nov 1999 A
6003731 Post et al. Dec 1999 A
6164499 Chia Dec 2000 A
6360961 Marazzi Mar 2002 B1
7121430 Mink et al. Oct 2006 B2
7147012 Kaufhold et al. Dec 2006 B2
7185789 Mink et al. Mar 2007 B2
7654416 Buining et al. Feb 2010 B2
7690405 Miller et al. Apr 2010 B2
20050092772 Miller et al. May 2005 A1
20050252934 Miller et al. Nov 2005 A1
20050264794 Inzinna et al. Dec 2005 A1
20060231578 Mink et al. Oct 2006 A1
Related Publications (1)
Number Date Country
20120090725 A1 Apr 2012 US
Provisional Applications (3)
Number Date Country
61552553 Feb 2011 US
61033053 Mar 2008 US
61115960 Nov 2008 US
Continuation in Parts (3)
Number Date Country
Parent 12986448 Jan 2011 US
Child 13086140 US
Parent 12849427 Aug 2010 US
Child 12986448 US
Parent 12396050 Mar 2009 US
Child 12849427 US