The present invention relates to a Surface Acoustic Wave (SAW) device, and more particularly to a SAW device formed on an improved piezoelectric substrate.
Surface acoustic wave (SAW) devices use one or more interdigitated transducers (IDTs), and perhaps reflectors, provided on a piezoelectric substrate to convert acoustic waves to electrical signals and vice versa. SAW devices are often used in filtering applications for high-frequency signals. Of particular benefit is the ability to create low loss high order bandpass and notch filters without employing complex electrical filter circuits, which may require numerous active and passive components. A common location for a filtering application is in the transceiver circuitry of wireless communication devices.
With reference to
Notably, the fingers 20 are parallel to one another and aligned within an acoustic cavity, which essentially encompasses the area in which the reflectors 18 and the IDTs 16 reside. In this acoustic cavity, the standing wave or waves generated when the IDTs 16 are excited with electrical signals essentially reside within the acoustic cavity. As such, the acoustic wave energy essentially runs perpendicular across the various fingers 20. In the example illustrated in
The operating frequency of the SAW device 10 is a function of the pitch (P). The pitch is the spacing between the interdigitated fingers 20 of the IDTs 16 and reflectors 18. An objective of most SAW designs is to maintain a consistent frequency response of the SAW device 10. If the spacing changes between the interdigitated fingers 20, the frequency response of the SAW device 10 changes. However, the spacing changes are only a part of the response change. Another factor that significantly affects the frequency response change in the SAW device 10 is the change in SAW velocity which occurs in response to the change in elastic properties of the piezoelectric substrate 12. Unfortunately, piezoelectric substrates 12 generally have a relatively high thermal coefficient of expansion (TCE) and a significant dependence on the temperature coefficient of velocity (TCV), and as temperature changes, the piezoelectric substrate 12 will expand and contract and the velocity will increase and decrease. Such expansion and contraction changes the pitch, or spacing, between the interdigitated fingers 20 as the velocity changes, with temperature variations, in an unfavorable way. Expansion and contraction of the piezoelectric substrate 12, along with an increase and decrease of SAW velocity changes the frequency response of the SAW device 10. The thermal coefficient of frequency (TCF=TCV−TCE) is a measure of how much the frequency response changes as a function of temperature. Given the need for a SAW device 10 having a frequency response that is relatively constant as temperature changes, there is a need for a piezoelectric substrate 12 that has an effective TCF that is relatively low. To obtain a low TCF, the piezoelectric substrate 12 needs to have a relatively low difference between the effective TCE and the effective TCV. This condition may coincide with simultaneously low TCE and TCV to limit expansion and contraction of the piezoelectric substrate 12 as temperature changes.
A piezoelectric substrate 12 having a higher TCE also injects issues during manufacturing of the SAW device 10. As noted, the piezoelectric substrate 12 is formed on a supporting substrate 14. The supporting substrate 14 generally has a significantly lower TCE than the piezoelectric substrate 12 and thus will not expand or contract as much as the piezoelectric substrate 12 as temperature changes. As such, the change in velocity is minimal for the supporting substrate 14 as temperature changes. As temperature changes during the manufacturing process, the piezoelectric substrate 12 tends to expand and contract more than the supporting substrate 14, which results in bending or warping of both the supporting substrate 14 and the piezoelectric substrate 12, as shown in
The present invention provides a composite structure having a supporting substrate between a piezoelectric substrate and a compensation layer. The materials used to form the piezoelectric substrate and the compensation layer in isolation have higher thermal coefficients of expansion (TCE) relative to the TCE of the materials forming the supporting substrate. Once the piezoelectric structure is created, the piezoelectric substrate and the compensation layer tend to expand and contract in a similar manner as temperature changes. As such, the expansion and contraction forces applied to the supporting substrate by the piezoelectric substrate due to temperature changes are substantially countered by opposing forces applied by the compensation layer. Since the expansion or contraction forces on opposing faces of the supporting substrate, applied to the supporting substrate by the piezoelectric substrate and the compensation layer are similar, and thus counter one another, the composite structure resists bending or warping as temperature changes. Reducing bending and warping reduces expansion and contraction of the piezoelectric substrate, and thus the effective TCE of the piezoelectric substrate. Preferably, the supporting substrate has a relatively high Young's Modulus to provide sufficient rigidity to withstand the forces applied by the piezoelectric substrate and the compensation layer, and thus further reduces expansion and contraction of the piezoelectric substrate.
Since providing the compensation layer on the opposite side of the supporting substrate reduces the effective TCE of the piezoelectric substrate, the amount of expansion and contraction along the surface of the piezoelectric substrate as temperature changes is reduced. Therefore, the change in spacing, or pitch, between the interdigitated fingers of the IDTs and the reflectors as temperature changes is reduced. Reducing the change in spacing between the interdigitated fingers reduces the effective thermal coefficient of frequency (TCF) of the piezoelectric substrate to improve overall frequency response of the IDTs and the reflectors, and thus the SAW device, as temperature changes. At the same time, the amount of stress in the region of ultrasonic propagation on the surface of the piezoelectric substrate is increased leading to a stronger change in elastic properties, and thus, leading to favorable changes in ultrasonic velocity. Applying larger stress to the piezoelectric substrate leads to improvement of the TCV to further improve the overall frequency response of the IDTs and the reflectors, and thus the SAW device, as temperature changes.
Those skilled in the art will appreciate the scope of the present invention and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the invention, and together with the description serve to explain the principles of the invention.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the invention and illustrate the best mode of practicing the invention. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the invention and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
With reference to
The present invention provides a composite structure 24 having a supporting substrate 14 between the piezoelectric substrate 12 and a compensation layer 26. The materials used to form the piezoelectric substrate 12 and the compensation layer 26 in isolation have relatively high thermal coefficients of expansion (TCE) relative to the TCE of the materials forming the supporting substrate 14. Once the composite structure 24 is created, the piezoelectric substrate 12 and the compensation layer 26 tend to expand and contract in a similar manner as temperature changes. As such, the expansion and contraction forces applied to the supporting substrate 14 by the piezoelectric substrate 12 due to temperature changes are substantially countered by opposing forces applied by the compensation layer 26. Since the expansion and contraction forces applied to the supporting substrate 14 by the piezoelectric substrate 12 and the compensation layer 26 substantially counter or mirror one another, the composite structure 24 resists bending or warping as temperature changes. Reducing bending and warping reduces expansion and contraction of the piezoelectric substrate 12, and thus, the effective TCE of the piezoelectric substrate 12. Preferably, the supporting substrate 14 has a relatively high Young's Modulus to provide sufficient rigidity to withstand the forces applied by the piezoelectric substrate 12 and the compensation layer 26, and thus, further reduce expansion and contraction of the piezoelectric substrate 12.
Since providing the compensation layer 26 on the opposite side of the supporting substrate 14 reduces the effective TCE of the piezoelectric substrate 12, the amount of expansion and contraction along the surface of the piezoelectric substrate 12 as temperature changes is reduced. Therefore, the change in spacing, or pitch, between the interdigitated fingers 20 of the IDTs 16 and the reflectors 18 as temperature changes is reduced. Reducing the change in spacing between the interdigitated fingers 20 reduces the effective thermal coefficient of frequency (TCF) of the piezoelectric substrate 12 to improve overall frequency response of the IDTs 16 and the reflectors 18, and thus the SAW device 10, as temperature changes. At the same time, the amount of stress in the region of ultrasonic propagation on the surface of the piezoelectric substrate is increased leading to a stronger change in elastic properties, and thus, leading to favorable changes in ultrasonic velocity reflected in the temperature coefficient of velocity (TCV).
With reference to
The supporting substrate 14 has a relatively low isolated TCE value with respect to the piezoelectric substrate 12 and a high Young's Modulus. For example, the isolated TCE value of the supporting substrate 14 may be approximately −10 to 10 ppm/degree C. and the Young's Modulus may be approximately 20 to 1200 Gpa, with 100 to 200 Gpa being the preferred range. In a preferred embodiment the isolated TCE value of the supporting substrate 14 is approximately less than 4 ppm/degree C. and the Young's Modulus value is approximately 140 GPa. The supporting substrate 14 may be silicon, silicon dioxide, fused silica, sapphire, ceramic alumina, ceramic glass, low TCE glass, diamond, Invar, Elinvar, Kovar, Titanium Niobium Invar, chromium, platinum, or palladium based Invar, tungsten carbide foil, chromium foil, titanium dioxide doped silica, powder filled or sol-gel based solidifying compositions, or any solid dielectric with a relatively low TCE value, and may be approximately 10 to 1000 μm in thickness. In a preferred embodiment, the supporting substrate 14 is silicon and is approximately 200 to 500 μm in thickness.
The piezoelectric substrate 12 is bonded or otherwise attached to the top surface of the supporting substrate 14. The bonding method may be organic adhesive bonding, non-organic adhesive bonding, direct bonding, metal layer bonding, metal glue bonding, or the like. As described further below in association with another embodiment, the supporting substrate 14 may also be formed on the piezoelectric substrate 12 by evaporation, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), sputtering, or similar deposition, growth, or electroplating process. In a preferred embodiment, the bonding method is direct bonding, because it provides more compatibility with typical integrated circuit processing, minimizes contamination, and offers long-term stability of the bond between the piezoelectric substrate 12 and the supporting substrate 14. In a preferred embodiment, the process of bonding the piezoelectric substrate 12 to the supporting substrate 14 occurs at or around room temperature.
In
In
The composite structure 24, including the piezoelectric substrate 12, the supporting substrate 14, and the compensation layer 26, has an effective TCE value that is lower than the isolated TCE value of the piezoelectric substrate 12. The effective TCE value of the composite structure 24 may be approximately −10 to 16 ppm/degree C. In a preferred embodiment, the effective TCE value of the composite structure 24 is approximately 0 ppm/degree C. The corresponding effective TCF value of the composite structure 24 may be approximately −10 to 40 ppm/degree C. In a preferred embodiment, the effective TCF value of the composite structure 24 is approximately 0 ppm/degree C. The composite structure 24 may be approximately 20 to 1000 μm in thickness. In a preferred embodiment, the composite structure 24 is approximately 200 to 500 μm in thickness.
Those skilled in the art will recognize that other thicknesses, TCE values, and TCF values for the piezoelectric substrate 12, the supporting substrate 14, the compensation layer 26, and the composite structure 24 are applicable. Although the piezoelectric substrate 12, the supporting substrate 14, and the compensation layer 26 are depicted on top of one another in this example, those skilled in the art will recognize that there may be any number of layers in between those depicted without departing from the functionality or concepts of the present invention. Further, the piezoelectric substrate 12, the supporting substrate 14, and the compensation layer 26 may include one or more layers of the same or different materials.
In
With reference to the graphical representations of
In
Alternatively, prior to growing the supporting substrate 14 onto the piezoelectric substrate 12, the piezoelectric substrate 12 may be temporarily attached to a carrier. The carrier is joined to the bottom surface of the piezoelectric substrate 12 by a glue bonding method or the like, and the piezoelectric substrate 12 is then polished and thinned. The temporary carrier may be removed prior to forming the IDTs 16 and reflectors 18 on the surface of the piezoelectric substrate 12.
With reference to the graphical representations of
In
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present invention. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application is a Divisional of U.S. patent application Ser. No. 11/623,939 filed Jan. 17, 2007, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3585415 | Muller et al. | Jun 1971 | A |
4464639 | Staples | Aug 1984 | A |
5010269 | Hikita et al. | Apr 1991 | A |
5338999 | Ramakrishnan et al. | Aug 1994 | A |
5446330 | Eda et al. | Aug 1995 | A |
5448126 | Eda et al. | Sep 1995 | A |
5453652 | Eda et al. | Sep 1995 | A |
5682126 | Plesski et al. | Oct 1997 | A |
5815900 | Ichikawa et al. | Oct 1998 | A |
5846320 | Matsuyama et al. | Dec 1998 | A |
6034578 | Fujita et al. | Mar 2000 | A |
6313568 | Sullivan et al. | Nov 2001 | B1 |
6353372 | Baier et al. | Mar 2002 | B1 |
6420820 | Larson, III | Jul 2002 | B1 |
6420946 | Bauer et al. | Jul 2002 | B1 |
6441539 | Kitamura et al. | Aug 2002 | B1 |
6573635 | Suga et al. | Jun 2003 | B2 |
6599781 | Li | Jul 2003 | B1 |
6685168 | Stelzl et al. | Feb 2004 | B1 |
6737941 | Tournois | May 2004 | B1 |
6754471 | Vakilian | Jun 2004 | B1 |
6759928 | Endou et al. | Jul 2004 | B2 |
6801100 | Nakamura et al. | Oct 2004 | B2 |
6816035 | Ma et al. | Nov 2004 | B2 |
6853113 | Bergmann | Feb 2005 | B2 |
6861927 | Abbott et al. | Mar 2005 | B1 |
7019435 | Nakaya et al. | Mar 2006 | B2 |
7042313 | Yata | May 2006 | B2 |
7071796 | Ueda et al. | Jul 2006 | B2 |
7078989 | Inoue et al. | Jul 2006 | B2 |
7101721 | Jorgenson et al. | Sep 2006 | B2 |
7112912 | Inoue et al. | Sep 2006 | B2 |
7126259 | Moler et al. | Oct 2006 | B2 |
7304553 | Bauer et al. | Dec 2007 | B2 |
7358831 | Larson, III et al. | Apr 2008 | B2 |
7528684 | Rao et al. | May 2009 | B1 |
20040104791 | Satoh et al. | Jun 2004 | A1 |
20040164650 | Xu et al. | Aug 2004 | A1 |
20040256624 | Sung | Dec 2004 | A1 |
20050057323 | Kando | Mar 2005 | A1 |
20050099091 | Mishima et al. | May 2005 | A1 |
20060138902 | Kando | Jun 2006 | A1 |
20060186556 | Sung | Aug 2006 | A1 |
20070109075 | Igaki | May 2007 | A1 |
20070296306 | Hauser et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
PCTEP0508964 | Aug 2005 | DE |
02000932 | Jan 1990 | JP |
07086866 | Mar 1995 | JP |
2005347295 | Dec 2005 | JP |
2006222512 | Aug 2006 | JP |
2005013481 | Oct 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080168638 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11623939 | Jan 2007 | US |
Child | 12014191 | US |