Claims
- 1. A process for lowering the alkali metal content of a porous, unfired, supportable ceramic shape containing alkali metal so as to increase the refractoriness and thermal shock resistance of fired porous ceramic articles made therefrom, comprising the steps of first contacting said porous ceramic shape with water to remove therefrom leachable alkali metal compounds, and thereafter contacting said porous ceramic shape with a dilute aqueous solution of an ammonium salt selected from the group consisting of ammonium acetate, ammonium bicarbonate, ammonium carbonate, ammonium chloride, ammonium hydroxide, ammonium sulfate, and mixtures thereof, to effect exchange of ammonium ion for remaining alkali metal ion in said porous ceramic shape to an extent such that a fired porous ceramic article made from said porous, unfired, supportable ceramic shape contains less than about 0.5 percent by weight alkali metal.
- 2. The process according to claim 1 wherein, after contact with said dilute solution of said ammonium salt, said porous ceramic shape is contacted with water to remove therefrom residual anions from said ammonium salt.
- 3. The process according to claim 1 wherein said alkali metal is sodium.
- 4. The process according to claim 1 wherein said porous ceramic shape comprises a porous aggregate of inorganic ceramic compounds bound by an aluminosilicate hydrogel.
- 5. The process according to claim 4 wherein said aluminosilicate hydrogel is formed by reaction between an alkali metal silicate and an alkali metal aluminate.
- 6. A process for lowering the alkali metal content of a porous, unfired, supportable ceramic shape containing alkali metal so as to increase the refractoriness and thermal shock resistance of fired porous ceramic articles made therefrom, comprising the steps of first contacting said porous ceramic shape with water to remove therefrom leachable alkali metal compounds, and thereafter contacting said porous ceramic shape with a dilute aqueous solution of ammonium chloride to effect exchange of ammonium ion for remaining alkali metal ion in said porous ceramic shape to an extent such that a fired porous ceramic article made from said porous, unfired, supportable ceramic shape contains less than about 0.5 percent by weight alkali metal.
- 7. A process for manufacturing a porous refractory ceramic article, comprising forming, from compounds which contain alkali metal compounds, a supportable, porous ceramic shape, contacting said porous shape with water in an mount and for a time effective to remove leachable alkali metal or alkali metal compounds therefrom, thereafter contacting said porous shape with a dilute aqueous solution of ammonium chloride to effect exchange of ammonium ion for remaining alkali metal ion in said porous shape to an extent such that a fired porous ceramic article made from said porous, unfired, supportable ceramic shape contains less than about 0.5 percent by weight alkali metal, and thereafter firing said porous ceramic shape.
- 8. The process according to claim 7 wherein said supportable porous ceramic shape is formed from compounds including an alkali metal aluminate and an alkali metal silicate in amounts effective to produce an aluminosilicate hydrogel serving as a binder for said supportable porous shape.
- 9. The process according to claim 8 wherein said alkali metal is sodium.
- 10. The process according to any of claims 1, 6 or 7 wherein a fired porous ceramic article made from said porous, unfired, supportable ceramic shape contains less than about 0.02 percent by weight alkali metal.
- 11. The process according to any of claims 1, 6 or 7 wherein a fired porous ceramic article made from said porous, unfired, supportable ceramic shape contains less than about 200 ppm alkali metal.
Parent Case Info
This is a continuation of co-pending application Ser. No. 127,654 filed on Dec. 2, 1987 now abandoned.
US Referenced Citations (15)
Continuations (1)
|
Number |
Date |
Country |
Parent |
127654 |
Dec 1987 |
|