Method for manufacture of semiconductor bearing thin film material

Abstract
A method for forming a semiconductor bearing thin film material. The method includes providing a metal precursor and a chalcogene precursor. The method forms a mixture of material comprising the metal precursor, the chalcogene precursor and a solvent material. The mixture of material is deposited overlying a surface region of a substrate member. In a specific embodiment, the method maintains the substrate member including the mixture of material in an inert environment and subjects the mixture of material to a first thermal process to cause a reaction between the metal precursor and the chalcogene material to form a semiconductor metal chalcogenide bearing material overlying the substrate member. The method then performs a second thermal process to remove any residual solvent and forms a substantially pure semiconductor metal chalcogenide thin film material overlying the substrate member.
Description
STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

NOT APPLICABLE


REFERENCE TO A “SEQUENCE LISTING,” A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK

NOT APPLICABLE


BACKGROUND OF THE INVENTION

The present invention relates generally to photovoltaic materials. More particularly, the present invention provides a method and structure for manufacture of semiconductor materials for photovoltaic applications. Merely by way of example, the present method and structure have been implemented using a zinc sulfide thin film material, but it would be recognized that the invention may be implemented using other materials.


From the beginning of time, mankind has been challenged to find way of harnessing energy. Energy comes in the forms such as petrochemical, hydroelectric, nuclear, wind, biomass, solar, and more primitive forms such as wood and coal. Over the past century, modern civilization has relied upon petrochemical energy as an important energy source. Petrochemical energy includes gas and oil. Gas includes lighter forms such as butane and propane, commonly used to heat homes and serve as fuel for cooking. Gas also includes gasoline, diesel, and jet fuel, commonly used for transportation purposes. Heavier forms of petrochemicals can also be used to heat homes in some places. Unfortunately, the supply of petrochemical fuel is limited and essentially fixed based upon the amount available on the planet Earth. Additionally, as more people use petroleum products in growing amounts, it is rapidly becoming a scarce resource, which will eventually become depleted over time.


More recently, environmentally clean and renewable sources of energy have been desired. An example of a clean source of energy is hydroelectric power. Hydroelectric power is derived from electric generators driven by the flow of water produced by dams such as the Hoover Dam in Nevada. The electric power generated is used to power a large portion of the city of Los Angeles in California. Clean and renewable sources of energy also include wind, waves, biomass, and the like. That is, windmills convert wind energy into more useful forms of energy such as electricity. Still other types of clean energy include solar energy. Specific details of solar energy can be found throughout the present background and more particularly below.


Solar energy technology generally converts electromagnetic radiation from the sun to other useful forms of energy. These other forms of energy include thermal energy and electrical power. For electrical power applications, solar cells are often used. Although solar energy is environmentally clean and has been successful to a point, many limitations remain to be resolved before it becomes widely used throughout the world. As an example, one type of solar cell uses crystalline materials, which are derived from semiconductor material ingots. These crystalline materials can be used to fabricate optoelectronic devices that include photovoltaic and photodiode devices that convert electromagnetic radiation into electrical power. However, crystalline materials are often costly and difficult to make on a large scale. Additionally, devices made from such crystalline materials often have low energy conversion efficiencies. Other types of solar cells use “thin film” technology to form a thin film of photosensitive material to be used to convert electromagnetic radiation into electrical power. Similar limitations exist with the use of thin film technology in making solar cells. That is, efficiencies are often poor. Additionally, film reliability is often poor and cannot be used for extensive periods of time in conventional environmental applications. Often, thin films are difficult to mechanically integrate with each other. These and other limitations of these conventional technologies can be found throughout the present specification and more particularly below.


From the above, it is seen that improved techniques for manufacturing photovoltaic materials and resulting devices are desired.


BRIEF SUMMARY OF THE INVENTION

According to embodiments of the present invention, a method and a system for forming thin film semiconductor materials for photovoltaic applications is provided. More particularly, the present invention provides a method and structure for forming semiconductor materials used for the manufacture of photovoltaic devices. Merely by way of example, the method has been used to provide zinc sulfide for photovoltaic application. But it would be recognized that the present invention has a much broader range of applicability, for example, other semiconductor metal chalcogenide materials such as zinc oxide, copper sulfide, copper oxide, zinc selenide, iron sulfide, cadmium sulfide, cadmium selenide, and others may be formed.


In a specific embodiment, a method for forming a semiconductor bearing thin film material includes providing a metal precursor. The method also includes providing a chalcogene precursor. The method forms a mixture of material comprising the metal precursor, the chalcogene precursor and a solvent material. In a specific embodiment, the method deposits the mixture of material overlying a surface region of a substrate member and maintains the substrate member including the mixture of material in an inert environment. The mixture of material is subjected to a first thermal process to form a semiconductor metal chalcogenide bearing thin film material overlying the surface region of the substrate member. The method includes subjecting the substrate member including the semiconductor metal chalcogenide bearing thin film material to a second thermal process to remove organic compounds including residual solvent material to form a substantially pure semiconductor thin film material overlying the surface region of the substrate.


Many benefits are achieved by ways of present invention. For example, the present invention uses starting materials that are commercially available to form a thin film of semiconductor bearing material overlying a suitable substrate member. The thin film of semiconductor bearing material can be further processed to form a semiconductor thin film material of desired characteristics, such as bandgap, impurity concentration, carrier concentration, doping, resistivity, and others. Additionally, the present method uses environmentally friendly materials that are relatively non-toxic. Depending on the embodiment, one or more of the benefits can be achieved. These and other benefits will be described in more detailed throughout the present specification and particularly below.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified diagram illustrating a method for forming a metal chalcogenide bearing thin film material according to an embodiment of the present invention.



FIG. 2 is a simplified diagram illustrating a substrate member for forming a metal chalcogenide bearing thin film material according to an embodiment of the present invention.



FIG. 3 is a simplified diagram illustrating a system for forming a metal chalcogenide bearing thin film material according to an embodiment of the present invention.



FIG. 4 is a simplified diagram illustrating a method for forming a metal chalcogenide bearing thin film material according to an embodiment of the present invention.



FIGS. 5-13 are simplified diagrams illustrating experimental results according to an embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

According to embodiments of the present invention, a method and a system for forming semiconductor materials for photovoltaic applications is provided. More particularly, the present invention provides a method and system for processing semiconductor materials used for the manufacture of photovoltaic devices. Merely by way of example, the method has been used to provide a metal chalcogenide thin film material, for example, zinc sulfide bearing thin film material for photovoltaic application. But it would be recognized that the present invention has a much broader range of applicability, for example, embodiments of the present invention may be used to form other metal chalcogenides such as iron sulfide, copper sulfide, zinc selenide, and others, and metal oxides such as zinc oxide, iron oxide, copper oxide, and others.



FIG. 1 is a simplified diagram illustrating a method for forming a metal chalcogenide bearing thin film material overlying a substrate according to an embodiment of the present invention. The diagram is merely an example, which should not unduly limit the claims herein. One skilled in the art would recognize other variations, modifications, and alternatives. As shown in FIG. 1, a metal precursor 102 is provided. Also shown in FIG. 1, a chalcogene precursor 104 is provided. The chalcogene precursor can be an organochalcogene compound in a specific embodiment. Other suitable chalcogene precursors may also be used. In a specific embodiment, the metal precursor and the chalcogene precursor are allowed to be dispersed or dissolved in a suitable solvent 106 to form a mixture of material 108. Taking a zinc precursor and a sulfur precursor as an example, the zinc precursor may include zinc acetate, zinc methacrylate, zinc acrylate, zinc acetylacetonate, zinc chloride, zinc nitrate, and others. In a specific embodiment, the sulfur precursor can be an organosulfur compound such as thiourea. Other suitable sulfur precursors may also be used. These other sulfur precursors can include thiols, thioethers, thioacetamides, thiosulfates, and others. In a specific embodiment, the zinc precursor and the sulfur precursor are allowed to be dispersed or dissolved in a suitable solvent to form the mixture of material. The solvent can be ethanol amine, methyloxy ethanol or a combination for zinc acetate and thiourea in a preferred embodiment. Other solvent/solvents may also be used depending on the embodiment.


Referring to FIG. 2, the method includes providing a substrate member 202 including a surface region 204 in a specific embodiment. The substrate member may be a transparent substrate such as glass, quartz, fused silica, and others in a specific embodiment. The substrate member may also be a metal material. Examples of the metal material may include stainless steel, aluminum, nickel, and others. Alternatively, the substrate member can be a semiconductor material such as silicon, silicon germanium, germanium, compound III-V semiconductor such as gallium arsenide, II-VI semiconductors and others. Other substrates such as polymers, multilayered materials, and others may also be used. Of course there can be other variations, modifications, and alternatives.


Optionally, the substrate member may be first subjected to a surface treatment process. Such surface treatment process can include a cleaning process to remove contaminants and particulates. For example, the cleaning process may include wet clean using a suitable solvent followed by drying. The wet clean can include wiping the surface of the substrate member using organic solvents such as alcohols (isopropyl alcohol, ethanol, and others) or an acid clean followed by rinsing and drying. A dry cleaning process may also be used depending on the application. Alternatively, the surface of the substrate member may be subjected to a plasma process to clean or to active the surface. Of course there can be other variations, modifications, and alternatives.


In a specific embodiment, the mixture of material is dispensed 302 onto a center region 304 of the surface region of the substrate member as shown in FIG. 3. In a specific embodiment, the mixture of material is allowed to distribute over the surface region of the substrate member to form a thickness of material overlying the surface region of the substrate member. As shown, the thickness of material may be formed using a spin coating process 306. The precursor compounds provided in the solvent may also be distributed over the surface region using a doctor blade 308. Alternatively, the mixture of material may be deposited using other solution deposition methods such as a dip coating process, a spraying process, an inkjet process, a screen printing process, and others. Of course one skilled in the art would recognize other variations, modifications, and alternatives.


As shown in FIG. 4, the thickness of material 402 comprising the mixture of material is allowed to be evenly formed overlying the substrate member. In a specific embodiment, the substrate member including the thickness of material is maintained in an inert environment 404. The inert environment may be provided using nitrogen, argon, helium and others, depending on the embodiment. In a specific embodiment, the mixture of material is subjected to a first thermal process 406 while being maintained in the inert environment. The first thermal process provides heat energy to allow reaction between the metal precursor and the sulfur precursor to form the metal sulfide in a specific embodiment. Again taking r zinc acetate and thiourea as precursors as an example, the first thermal process is provided at a temperature ranging from about 70 Degree Celsius to about 90 Degree Celsius. Depending on the embodiment, a second thermal process 502 may be provided to remove residual organic compounds including the solvent that may remain after the first thermal process as shown in FIG. 5. For example, the second thermal process is provided at a temperature of about 300 Degree Celsius for organic compounds such as methyloxy ethanol. As shown, a substantially pure metal chalcogenide 504, for example zinc sulfide is formed overlying the surface region of the substrate member after the second thermal process. Of course there can be other variations, modifications, and alternatives.


While the invention has been described using zinc sulfide the method has been used to form other semiconductor thin film metal chalcogenides, for example, zinc selenide (ZnSe) overlying a substrate member. The method includes providing a zinc precursor such as zinc acetate, zinc methacrylate, zinc acrylate, zinc acetylacetonate, zinc chloride, zinc nitrate, and others. The method also provides an organo selenium as a selenium precursor. In a preferred embodiment, the organo selenium can be selenourea. Other selenium precursors may also be used. In a specific embodiment, the zinc precursor and the selenium precursor are added to a suitable solvent to form a solution mixture of precursors. As merely an example, zinc precursor such as zinc acetate and selenium precursor such as selenourea are provided in a solvent comprising methoxy-ethanol and ethanolamine to form the solution mixture of precursors. The solution mixture of precursors is deposited overlying a surface region of a substrate member using techniques such as spin coating, doctor blade, inkjet, among others. In a specific embodiment, the solution mixture of precursors overlying the substrate member is maintained in an inert environment. The method then provides a first thermal process to allow a reaction between zinc acetate and selenourea to form zinc selenide overlying the substrate member. The method also includes a second thermal process to remove any organic compounds including residual solvents, forming a substantially pure zinc selenide thin film material overlying the substrate member. Of course there can be other variations, modifications, and alternatives.



FIGS. 6-13 are simplified diagrams illustrating experimental results according to an embodiment of the present invention. Referring to FIG. 6, scanning electron microscope (SEM) pictures of a zinc sulfide thin film surface are shown. SEM picture 601 was taken at a magnification of 10,000×, SEM picture 602 was taken at a magnification of 100,000×, and SEM picture 603 was taken at magnification of 250,000×. As shown, the zinc sulfide thin film has a relatively flat surface and an uniform morphology. Of course there can be other variations, modifications, and alternatives.



FIG. 7 is a simplified diagram illustrating elemental composition of a zinc sulfide thin film material deposited on a glass substrate according to an embodiment of the present invention. Elemental composition estimated using Electron dispersion X-ray spectroscopy (EDX) showed that an atomic ratio of Zn to S was approximately 1.18. Of course there can be other variations, modifications, and alternatives.



FIG. 8 is a simplified diagram illustrating a UV-VIS absorption spectrum of the zinc sulfide thin film material according to an embodiment of the present invention. A corresponding transmission spectrum is illustrated in FIG. 9. As shown, the film becomes transmissive for wavelengths greater than about 360 nm. Of course there can be other variations, modifications, and alternatives.



FIG. 10 is a simplified plot of absorbance square as a function of energy in eV for the zinc sulfide thin film material according to an embodiment of the present invention. As shown, a bandgap energy for the zinc sulfide thin film material is about 3.66 eV, which is comparable to bandgap energy of bulk zinc sulfide (3.7 eV). Of course there can be other variations, modifications, and alternatives.



FIG. 11 is a simplified plot of diagram illustrating a UV-VIS absorption spectrum of a zinc selenide thin film material overlying a glass substrate according to an embodiment of the present invention. The corresponding transmission spectrum is illustrated in FIG. 12. As shown, the film becomes transmissive for wavelengths greater than about 480 nm. Of course there can be other variations, modifications, and alternatives.



FIG. 13 is a simplified plot of absorbance square as a function of energy in eV for the zinc selenide thin film material according to an embodiment of the present invention. As shown, a bandgap energy for the zinc selenide thin film material is about 2.6 eV. Of course there can be other variations, modifications, and alternatives


Although the above has been illustrated according to specific embodiments, there can be other modifications, alternatives, and variations. For example, other metal chalcogenides such as cadmium sulfide, iron sulfide, copper sulfide, cadmium selenide, iron selenide, copper selenide may be formed using suitable respective precursor materials. Additionally, the metal sulfide thin film material may be doped with suitable impurities to have a desired impurity characteristics. It is also understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.

Claims
  • 1. A method for forming semiconductor bearing thin film material, the method comprising: providing a zinc-containing precursor;providing a sulfur-containing precursor;forming a mixture of material comprising the zinc-containing precursor, the sulfur-containing precursor and a solvent material;depositing the mixture of material overlying a surface region of a substrate member,maintaining the substrate member including the mixture of material in an inert environment;subjecting the mixture of material to a first thermal process to form a semiconductor zinc-sulfide containing thin film material overlying the surface region of the substrate member; andsubjecting the semiconductor zinc-sulfide containing thin film material to a second thermal process to form a substantially pure semiconductor thin film material consisting of zinc sulfide, wherein the zinc sulfide comprises a bandgap energy of about 94.6% or greater compared to a bulk zinc sulfide film.
  • 2. The method of claim 1 wherein the solvent material is selected from the group consisting of ethanol, ethanolamine, methoxyethanol, tetrahydrofuran, and ethylene glycol.
  • 3. The method of claim 1 wherein the first thermal process is provided at a temperature ranging from about 80 Degree Celsius to about 90 Degree Celsius.
  • 4. The method of claim 1 wherein the inert environment is provided using nitrogen, argon, or helium.
  • 5. The method of claim 1 wherein the second thermal process is provided at a temperature of about 300 Degree Celsius and higher.
  • 6. The method of claim 1 wherein the depositing step comprises a solution deposition process including a spin on process, a doctor blade process, a dip coating process, a spraying process, an screen printing process, or an inkjet process.
  • 7. The method of claim 1 wherein the substrate member is a transparent substrate.
  • 8. The method of claim 7 wherein the transparent substrate is selected from glass, fused silica, and quartz.
  • 9. The method of claim 1 wherein the substrate member is a metal.
  • 10. The method of claim 9 wherein the substrate member is a metal selected from stainless steel, aluminum, and nickel.
  • 11. The method of claim 1 wherein the substrate member is a semiconductor material selected from silicon, silicon germanium, germanium, II-VI compound semiconductors, III-V compound semiconductors, and silicon on insulator.
  • 12. The method of claim 1 wherein the substrate member is a multilayer material.
  • 13. The method of claim 1 wherein the substrate member is a polymer.
  • 14. The method of claim 1 wherein the zinc precursor is selected from zinc acetate, zinc methacrylate, zinc acrylate, zinc acetylacetonate, zinc chloride, and zinc nitrate.
  • 15. The method of claim 1 wherein the sulfur precursor is selected from thiourea, thiols, thioethers, thioaceamides, and thiosulfates.
  • 16. The method of claim 1 wherein the solvent material comprises methoxyethanol and ethanolamine.
  • 17. The method of claim 1 wherein the zinc sulfide material is characterized by a bandgap of about 3.66 eV.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims priority to provisional patent application Ser. No. 60/976,406; filed on Sep. 28, 2007; commonly assigned, and of which is hereby incorporated by reference for all purposes.

US Referenced Citations (216)
Number Name Date Kind
3520732 Nakayama et al. Jul 1970 A
3975211 Shirland Aug 1976 A
4062038 Cuomo et al. Dec 1977 A
4332974 Fraas Jun 1982 A
4335266 Mickelsen et al. Jun 1982 A
4441113 Madan Apr 1984 A
4442310 Carlson et al. Apr 1984 A
4461922 Gay et al. Jul 1984 A
4465575 Love et al. Aug 1984 A
4471155 Mohr et al. Sep 1984 A
4499658 Lewis Feb 1985 A
4507181 Nath et al. Mar 1985 A
4517403 Morel et al. May 1985 A
4518855 Malak May 1985 A
4532372 Nath et al. Jul 1985 A
4542255 Tanner et al. Sep 1985 A
4581108 Kapur et al. Apr 1986 A
4589194 Roy May 1986 A
4598306 Nath et al. Jul 1986 A
4599154 Bender et al. Jul 1986 A
4611091 Choudary et al. Sep 1986 A
4623601 Lewis et al. Nov 1986 A
4625070 Berman et al. Nov 1986 A
4638111 Gay Jan 1987 A
4661370 Tarrant Apr 1987 A
4663495 Berman et al. May 1987 A
4724011 Turner et al. Feb 1988 A
4727047 Bozler et al. Feb 1988 A
4751149 Vijayakumar et al. Jun 1988 A
4775425 Guha et al. Oct 1988 A
4798660 Ermer et al. Jan 1989 A
4816082 Guha et al. Mar 1989 A
4816420 Bozler et al. Mar 1989 A
4837182 Bozler et al. Jun 1989 A
4873118 Elias et al. Oct 1989 A
4915745 Pollock et al. Apr 1990 A
4950615 Basol et al. Aug 1990 A
4968354 Nishiura et al. Nov 1990 A
4996108 Divigalpitiya et al. Feb 1991 A
5008062 Anderson et al. Apr 1991 A
5011565 Dube et al. Apr 1991 A
5028274 Basol et al. Jul 1991 A
5039353 Schmitt Aug 1991 A
5045409 Eberspacher et al. Sep 1991 A
5078803 Pier et al. Jan 1992 A
5125984 Kruehler et al. Jun 1992 A
5133809 Sichanugrist et al. Jul 1992 A
5137835 Karg Aug 1992 A
5154777 Blackmon et al. Oct 1992 A
5180686 Banerjee et al. Jan 1993 A
5211824 Knapp May 1993 A
5217564 Bozler et al. Jun 1993 A
5231047 Ovshinsky et al. Jul 1993 A
5248345 Sichanugrist et al. Sep 1993 A
5261968 Jordan Nov 1993 A
5298086 Guha et al. Mar 1994 A
5336623 Sichanugrist et al. Aug 1994 A
5346853 Guha et al. Sep 1994 A
5397401 Toma et al. Mar 1995 A
5445847 Wada Aug 1995 A
5474939 Pollock et al. Dec 1995 A
5501744 Albright et al. Mar 1996 A
5512107 Van den Berg Apr 1996 A
5528397 Zavracky et al. Jun 1996 A
5536333 Foote et al. Jul 1996 A
5578103 Araujo et al. Nov 1996 A
5578503 Karg et al. Nov 1996 A
5622634 Noma et al. Apr 1997 A
5626688 Probst et al. May 1997 A
5665175 Safir Sep 1997 A
5676766 Probst et al. Oct 1997 A
5726065 Szlufcik et al. Mar 1998 A
5738731 Shindo et al. Apr 1998 A
5868869 Albright et al. Feb 1999 A
5977476 Guha et al. Nov 1999 A
5981868 Kushiya et al. Nov 1999 A
5985691 Basol et al. Nov 1999 A
6040521 Kushiya et al. Mar 2000 A
6048442 Kushiya et al. Apr 2000 A
6092669 Kushiya et al. Jul 2000 A
6107562 Hashimoto et al. Aug 2000 A
6127202 Kapur et al. Oct 2000 A
6166319 Matsuyama Dec 2000 A
6172297 Hezel et al. Jan 2001 B1
6258620 Morel et al. Jul 2001 B1
6294274 Kawazoe et al. Sep 2001 B1
6307148 Takeuchi et al. Oct 2001 B1
6310281 Wendt et al. Oct 2001 B1
6328871 Ding et al. Dec 2001 B1
RE37512 Szlufcik et al. Jan 2002 E
6361718 Shinmo et al. Mar 2002 B1
6372538 Wendt et al. Apr 2002 B1
6423565 Barth et al. Jul 2002 B1
6632113 Noma et al. Oct 2003 B1
6635307 Huang et al. Oct 2003 B2
6653701 Yamazaki et al. Nov 2003 B1
6667492 Kendall Dec 2003 B1
6690041 Armstrong et al. Feb 2004 B2
6784492 Morishita Aug 2004 B1
6852920 Sager et al. Feb 2005 B2
6878871 Scher et al. Apr 2005 B2
6974976 Hollars Dec 2005 B2
7122398 Pichler Oct 2006 B1
7179677 Ramanathan et al. Feb 2007 B2
7194197 Wendt et al. Mar 2007 B1
7220321 Barth et al. May 2007 B2
7235736 Buller et al. Jun 2007 B1
7252923 Kobayashi Aug 2007 B2
7265037 Yang et al. Sep 2007 B2
7319190 Tuttle Jan 2008 B2
7364808 Sato et al. Apr 2008 B2
7442413 Zwaap et al. Oct 2008 B2
7544884 Hollars Jun 2009 B2
7736755 Igarashi et al. Jun 2010 B2
7741560 Yonezawa Jun 2010 B2
7855089 Farris, III et al. Dec 2010 B2
7863074 Wieting Jan 2011 B2
7910399 Wieting Mar 2011 B1
7955891 Wieting Jun 2011 B2
7960204 Lee Jun 2011 B2
7993954 Wieting Aug 2011 B2
7993955 Wieting Aug 2011 B2
7998762 Lee et al. Aug 2011 B1
8003430 Lee Aug 2011 B1
8008110 Lee Aug 2011 B1
8008111 Lee Aug 2011 B1
8008112 Lee Aug 2011 B1
20020002992 Kariya et al. Jan 2002 A1
20020004302 Fukumoto et al. Jan 2002 A1
20020061361 Nakahara et al. May 2002 A1
20020063065 Sonoda et al. May 2002 A1
20030075717 Kondo et al. Apr 2003 A1
20030089899 Lieber et al. May 2003 A1
20040063320 Hollars Apr 2004 A1
20040084080 Sager et al. May 2004 A1
20040095658 Buretea et al. May 2004 A1
20040110393 Munzer et al. Jun 2004 A1
20040187917 Pichler Sep 2004 A1
20040245912 Thurk et al. Dec 2004 A1
20040252488 Thurk Dec 2004 A1
20040256001 Mitra et al. Dec 2004 A1
20050074915 Tuttle et al. Apr 2005 A1
20050098205 Roscheisen et al. May 2005 A1
20050109392 Hollars May 2005 A1
20050164432 Lieber et al. Jul 2005 A1
20050194036 Basol Sep 2005 A1
20050287717 Heald et al. Dec 2005 A1
20060034065 Thurk Feb 2006 A1
20060040103 Whiteford et al. Feb 2006 A1
20060051505 Kortshagen et al. Mar 2006 A1
20060096536 Tuttle May 2006 A1
20060096537 Tuttle May 2006 A1
20060096635 Tuttle May 2006 A1
20060102230 Tuttle May 2006 A1
20060130890 Hantschel et al. Jun 2006 A1
20060160261 Sheats et al. Jul 2006 A1
20060174932 Usui et al. Aug 2006 A1
20060219288 Tuttle Oct 2006 A1
20060219547 Tuttle Oct 2006 A1
20060220059 Satoh et al. Oct 2006 A1
20060249202 Yoo et al. Nov 2006 A1
20060267054 Martin et al. Nov 2006 A1
20070006914 Lee Jan 2007 A1
20070089782 Scheuten et al. Apr 2007 A1
20070116892 Zwaap May 2007 A1
20070116893 Zwaap May 2007 A1
20070151596 Nasuno et al. Jul 2007 A1
20070163643 Van Duren et al. Jul 2007 A1
20070169810 Van Duern et al. Jul 2007 A1
20070193623 Krasnov Aug 2007 A1
20070209700 Yonezawa et al. Sep 2007 A1
20070264488 Lee Nov 2007 A1
20070283998 Kuriyagawa et al. Dec 2007 A1
20070289624 Kuriyagawa et al. Dec 2007 A1
20080032044 Kuriyagawa et al. Feb 2008 A1
20080041446 Wu et al. Feb 2008 A1
20080057616 Robinson et al. Mar 2008 A1
20080092945 Munteanu et al. Apr 2008 A1
20080092953 Lee Apr 2008 A1
20080092954 Choi Apr 2008 A1
20080105294 Kushiya et al. May 2008 A1
20080110491 Buller et al. May 2008 A1
20080110495 Onodera et al. May 2008 A1
20080121264 Chen et al. May 2008 A1
20080121277 Robinson et al. May 2008 A1
20080210303 Lu et al. Sep 2008 A1
20080280030 Van Duren et al. Nov 2008 A1
20090021157 Kim et al. Jan 2009 A1
20090087940 Kushiya Apr 2009 A1
20090087942 Meyers Apr 2009 A1
20090145746 Hollars Jun 2009 A1
20090217969 Matsushima et al. Sep 2009 A1
20090234987 Lee et al. Sep 2009 A1
20090235983 Girt et al. Sep 2009 A1
20090235987 Akhtar et al. Sep 2009 A1
20090293945 Peter Dec 2009 A1
20100081230 Lee Apr 2010 A1
20100087016 Britt et al. Apr 2010 A1
20100087026 Winkeler et al. Apr 2010 A1
20100096007 Mattmann et al. Apr 2010 A1
20100101648 Morooka et al. Apr 2010 A1
20100101649 Huignard et al. Apr 2010 A1
20100122726 Lee May 2010 A1
20100197051 Schlezinger et al. Aug 2010 A1
20100210064 Hakuma et al. Aug 2010 A1
20100267190 Hakuma et al. Oct 2010 A1
20110070682 Wieting Mar 2011 A1
20110070683 Wieting Mar 2011 A1
20110070684 Wieting Mar 2011 A1
20110070685 Wieting Mar 2011 A1
20110070686 Wieting Mar 2011 A1
20110070687 Wieting Mar 2011 A1
20110070688 Wieting Mar 2011 A1
20110070689 Wieting Mar 2011 A1
20110070690 Wieting Mar 2011 A1
20110073181 Wieting Mar 2011 A1
Foreign Referenced Citations (20)
Number Date Country
7865198 Feb 1999 AU
200140599 Aug 2001 AU
3314197 Nov 1983 DE
10104726 Aug 2002 DE
102005062977 Sep 2007 DE
2646560 Nov 1990 FR
2124826 Feb 1984 GB
2000173969 Jun 2000 JP
2000219512 Aug 2000 JP
2002167695 Jun 2002 JP
2002270871 Sep 2002 JP
2002299670 Oct 2002 JP
2004332043 Nov 2004 JP
2005311292 Nov 2005 JP
WO 0157932 Aug 2001 WO
WO 2005011002 Feb 2005 WO
WO 2006126598 Nov 2006 WO
WO 2007022221 Feb 2007 WO
WO 2007077171 Jul 2007 WO
WO 2008025326 Mar 2008 WO
Provisional Applications (1)
Number Date Country
60976406 Sep 2007 US