The present invention relates to a method for manufacturing a screw.
More particularly, it relates to a method for manufacturing a bolting part, such as a screw or a nut, comprising a head extending longitudinally between two ends, the head having in section in a plane perpendicular to the longitudinal direction a substantially circular shape, the head comprising a periphery comprising at least one shoulder extending in a radial plane.
It is known practice from the prior art to make screws by cutting. However, this method causes a wastage of material that is ejected during the formation of the screw in the tool.
It is known practice from document GB 1913 113555 to make screws by hot forging. More particularly, this document describes a screw head which is made so as to allow the screw to be screwed in a first direction, but to prevent the screw from being unscrewed. Accordingly, the screw comprises a head that comprises shoulders and that has a conical shape.
However, the manufacture of screws by hot forging is time-consuming and costly and no longer satisfies the current requirements of industries using screws of this type.
The object of the present invention is to alleviate these drawbacks and to propose a method for manufacturing screws that are tamper-proof or can be removed with special tools, the method providing increased manufacturing rates without wastage of raw material forming the screw, while providing a precision of manufacture that is compatible with accepted tolerance limits.
Accordingly, the manufacturing method as described above is characterized in that it comprises at least the following forming steps: shearing of a wire of material so as to obtain a part of determined length, calibration of the part so as to correct the geometry of the part, that is to say to obtain end faces that are parallel with one another and perpendicular to the body, rough machining of the calibrated part so as to obtain the head of the bolting part, and finishing of the rough-machined part by means of a third punch so as to form at least one shoulder on the head of the bolting part, the calibration, rough machining and finishing steps being carried out only by cold heading.
By virtue of the manufacturing method by cold heading, the material is deformed in order to obtain the final shape without wastage of material, and the manufacturing rates are improved over those of the prior art.
According to other features
The invention also relates to a tool for applying the method described above, wherein:
The present invention will be better understood on reading the following detailed description made on the basis of the appended drawings in which:
a represents a screw comprising three shoulders,
b and 2c represent respectively a side view and a view from below of the screw represented in
d and 2e are views similar to those of
a, 3b and 3c represent respectively a view in perspective, a side view and a view from above of a screw of which the head has a conical shape and comprises three shoulders,
a, 6b, 7a and 7b represent a screw of which the head has respectively a spherical shape and a convex shape,
a, 8b represent respectively a view in section and a view from below of a screwing/unscrewing device associated with a bolting part according to the invention, illustrated in a view from below in
a and 9b represent a screw with a hollow head comprising a female cavity,
b and 10c represent a view in section and a view from below of a punch according to the invention,
In the various figures, the identical reference numbers correspond to identical or similar elements.
Each screw 10 comprises a body 11 and a head 12 and extends longitudinally between a first end 14 on the side of the head 12 of the screw and a second end 16 opposite to the first. The screw heads 12 have, in a plane perpendicular to the longitudinal direction X, a substantially circular shape. Each screw head 12 has an external periphery 18 on which at least one shoulder 20 is made.
Each shoulder 20 has a bearing face 22 and a convex portion 24. The bearing face 22 extends in a radial plane and is preferably placed over the whole width 1 of the periphery 18.
As can be seen in
d and 2e illustrate a screw head 12 for which the shoulders 20 are oriented to the left, that is to say in the clockwise direction.
As illustrated in
In
Unscrewing is possible for the heads having an angle α of between 0 and 7.30°.
When α is greater than or equal to 8°, the convex portion 24 of the shoulders 20 causes a difficult or even impossible unscrewing with a standard tool, because the convex shape makes it practically impossible to gain purchase on the screw head 12 in a tool in order to unscrew it.
In
The combination of the shoulders 20 and the conical shape therefore confers a double guarantee of preventing the unscrewing of the screw. The value α will therefore be determined depending on the needs of the user.
The wire is first placed in a first die 26 by means of transfer pliers 40. Then the first punch comes into contact with the first die 26 in order to calibrate the slug or piece of wire 38, that is to say give it the solid cylindrical shape. Then the calibrated part obtained is placed in a second die 28 by means of transfer pliers. The second punch 34 comes into contact with the second die 28 by means of an automatic press 42a for the step of rough machining the screw. By virtue of this step, the head 12 of the screw is formed without wastage of material. The head 12 of the screw may have a cylindrical shape or a conical shape as described above. The second punch 34 will be chosen depending on the desired shape of the head 12.
In order to obtain the shoulders 20, the rough-machined part obtained is placed in a third die 30 associated with a third punch 36 by means of the automatic press 42b.
The third punch 36 is illustrated in
Depending on the dimensions of the head of the bolting part, the number of dies and of punches may vary.
Each of these three steps is carried out by cold heading, that is to say by forging of the materials at ambient temperature. This method is particularly advantageous because it allows high manufacturing rates and there is hardly any wastage of material, and therefore not much scrap. Moreover, unlike hot heading, cold heading does not require an additional step cutting the fibers, that is to say a trimming operation, when there is surplus material, in order to obtain the final product.
Moreover, this method makes it possible to obtain greater precision when manufacturing parts and thus to reduce manufacturing tolerances.
Accordingly, the tools making it possible to apply the method, and notably the punches 32, 34, 36 and the dies 26, 28, 30, are made by electrical discharge machining, which provides great precision of the dimensions of the screw obtained after heading.
Moreover, the parts obtained have an improved strength over those manufactured using the methods of the prior art, because the fibers of the material are not deformed.
According to other variant embodiments, the screw head 12 has a convex shape as can be seen in
In
When the tool is brought in the direction for unscrewing the head, the convex portion of the tool comes to bear tangentially on the convex portion 24 of the head. The convex portion 24 acts as a cam and the head is driven in the unscrewing direction.
At the second end, the wrench has an open end 56 comprising at least one shoulder oriented in the opposite direction from that of the head of the bolting part.
This type of device operates in the same way as that described and illustrated in
Other screwing and unscrewing devices can be used to screw or unscrew a head of a bolting part according to the invention.
For example, they could be offset wrenches, socket wrenches, deep opening tubular socket wrenches, combination open-end and box wrenches, screwdriver endpieces, or ratchet screwdriver endpieces.
Accordingly, the tool comprises a longitudinal arm 58 that is substantially cylindrical and mounted so as to rotate freely in a tubular sleeve 60. The sleeve 60 and the arm 58 are placed coaxially. The arm 58 comprises a first end 62 and a second end 64 extending beyond the sleeve.
Fitted to the first end 62 is a socket 64. The socket 64 is fitted removably on the end of the arm and can therefore be removed from the arm. The user can therefore choose the socket 64 that suits the various shapes of nut or of screw according to the invention. Accordingly a set of sockets is provided having different cavities 66 and suitable for being fitted onto the first end of the arm 58.
The tool also comprises a brass ring 68 that is coaxial and placed on the side of the first end 62 of the arm. The ring 68 acts as an abutment for the socket 64 when the latter is moved in translation in an unscrewing direction.
An elastic means 70, forming a compression spring, is placed adjacent to the abutment 68 and absorbs the translational movement of the socket 64, transmitted by means of the ring 68, when unscrewing.
The tool operates in the following manner. When the user wishes to screw a nut or a screw according to the invention, he chooses the socket 64 suited to the determined screw or nut, and engages the socket 64 on the first end 62 of the arm 58 of the tool. The user manually or with the aid of a press, which can be seen in
When the user wishes to unscrew the screw or the nut, he still exerts an axial force so as to keep the nut or the screw engaged in the socket 64. He then exerts on the arm a torque with a force tending to unscrew the screw or the nut. The screw or the nut then tends to move in translation in a second direction, the reverse of the first direction, and exerts an axial pressure on the tool. This pressure is transmitted to the elastic means 70 by means of the socket and of the ring 68 forming an abutment. Thus the pressure exerted on the screw does not prevent unscrewing and consequently its translational movement in the second direction.
The invention is in no way limited to the embodiments described and illustrated that are given only as examples. Notably the invention can be applied to a bolting part such as a nut.
Number | Date | Country | Kind |
---|---|---|---|
08 05908 | Oct 2008 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2009/052041 | 10/23/2009 | WO | 00 | 3/30/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/046611 | 4/29/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1658658 | Schaffer | Feb 1928 | A |
1803803 | Kaufman | May 1931 | A |
2226491 | Gustafson | Dec 1940 | A |
2287214 | Wilcox | Jun 1942 | A |
2600214 | Davis | Jun 1952 | A |
2799027 | Hatebur | Jul 1957 | A |
3584667 | Reiland | Jun 1971 | A |
3673912 | Herr | Jul 1972 | A |
4812095 | Piacenti et al. | Mar 1989 | A |
7237462 | Liau | Jul 2007 | B1 |
8485013 | Hossler et al. | Jul 2013 | B2 |
Number | Date | Country |
---|---|---|
180798 | Jan 1955 | AT |
Number | Date | Country | |
---|---|---|---|
20110183766 A1 | Jul 2011 | US |