Priority is claimed to Swiss Patent Application No. CH 001122/07, filed on Jan. 25, 2007, the entire disclosure of which is incorporated by reference herein.
The present invention relates generally to the field of rotating electrical machines, and more particularly to a method for manufacturing a conductor bar of a rotating electrical machine and a conductor bar manufactured according to this method.
In the case of high-power rotating electrical machines, the associated windings are formed by conductor bars laid in slots of a sheet steel body. The conductor bars have a central metallic conductor (usually consisting of a plurality of partial conductors made from drawn copper wire with predominantly rectangular cross section). The conductor bars likewise have a predominantly rectangular cross section and are surrounded by an insulation of defined thickness (see, for example, publications DE-A1-198 11 370 or EP-B1-1 319 266). The insulation is frequently constructed by winding a glass/mica tape several times around the conductor, said tape being impregnated with artificial resin in order to remove air pockets and for strengthening.
These days, glass/mica tapes are applied almost exclusively by machine using special winding robots. In doing so, the rolls of tape are moved in a rotating ring along the longitudinal direction of the bar and the tape is wound on in several layers with about 50% overlap in the form of a spiral until the required thickness is reached.
A distinction is made between different winding methods, which are referred to as “parallel winding” and “cross winding”:
Parallel winding: Winding is always carried out in one direction only (see
Cross winding: Here, winding is carried out backwards and forwards in alternate directions (see
These crossing points (16 in
In fact, it has been shown that the life of cross-wound insulation with crossing points on the edge is only 25% of that of an insulation with crossing points on the broad side. For the latter, the life is approximately the same as for the parallel winding.
It is an object of the present invention to specify a winding method in the manufacture of conductor bars, which makes it possible to combine the dielectric advantages of the parallel winding with the economic advantages of the cross winding, and to create a corresponding conductor bar.
An aspect of the invention is that the insulating tape is wound around the conductor using a parallel winding up to a first partial thickness, and that the insulating tape is wound around the conductor from the first partial thickness using a second winding method, which differs from the parallel winding. By this means, the uneconomical parallel winding can be limited to a necessary partial range while it is possible to resort to simpler winding methods, such as the cross winding, in the remaining range.
An embodiment of the invention is distinguished in that from the first partial thickness the insulating tape is wound around the conductor in the second winding process until the full thickness d of the insulation is reached.
Advantageously, a glass/mica tape is used here as the insulating tape.
Another embodiment is characterized in that the insulating tape is wound around the conductor with an overlap of about 50%.
A further embodiment of the method according to the invention is distinguished in that, in the second winding method, successive layers of the insulating tape are wound around the conductor in alternate directions in the manner of a cross winding.
Preferably, that thickness at which the field strength at one edge of the conductor is equal to the nominal field strength on a broad side of the conductor is chosen as the first partial thickness.
An embodiment of the conductor bar according to the invention is characterized in that the insulating tape is a glass/mica tape, that successive layers of the insulating tape are wound around the conductor from the first partial thickness to the full thickness d of the insulation in alternate directions in the manner of a cross winding, and that the first partial thickness is that thickness at which the field strength at one edge of the conductor is equal to the nominal field strength on a broad side of the conductor.
The invention is explained in more detail below with reference to exemplary embodiments in conjunction with the drawings, in which:
According to
According to the new solution, when winding the insulating tape 13 around the conductor 11, the bottommost layers are now executed in parallel winding up to a first partial thickness (
The curves for E(s) are reproduced in
It is expedient to execute the insulation 12 in parallel winding up to the partial thickness corresponding to this distance from the edge si. However, from this partial thickness, parallel winding is absolutely unnecessary and the more favorable cross winding can be used.
As a rule of thumb, the first third or the first 40% of the tape layers should be applied in parallel winding, and cross winding used for the rest of the thickness.
Number | Date | Country | Kind |
---|---|---|---|
0122/07 | Jan 2007 | CH | national |
Number | Name | Date | Kind |
---|---|---|---|
5945764 | Bendfeld et al. | Aug 1999 | A |
6288341 | Tsunoda et al. | Sep 2001 | B1 |
6404092 | Baumann et al. | Jun 2002 | B1 |
6656317 | Hudson | Dec 2003 | B2 |
6836204 | Reid et al. | Dec 2004 | B2 |
7268293 | Smith et al. | Sep 2007 | B2 |
20040056550 | Grundl et al. | Mar 2004 | A1 |
20050016665 | Hudson | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
19811370 | Sep 1999 | DE |
0951132 | Oct 1999 | EP |
1319266 | Jun 2003 | EP |
2406721 | Apr 2005 | GB |
Number | Date | Country | |
---|---|---|---|
20080179984 A1 | Jul 2008 | US |