This application claims priority of van Aerle, et al., Netherlands Application NL 2002936 filed on May 27, 2009, entitled “A Method for Manufacturing Display Panel and a Display Panel Provided With Repairable Elements,” the contents of which are expressly incorporated herein by reference in their entirety including the contents and teachings of any references contained therein.
The invention relates to a display panel controllable by an active matrix drive comprising a structural element, said display panel being provided with means for enabling repair of malformations in electrical connectivity related to the structural element. The invention further relates to a method of manufacturing a display panel controllable by an active matrix drive.
An embodiment of a display panel as set forth above is known from U.S. Pat. No. 6,327,007 B1. The known display panel relates to a liquid crystal display (LCD) array comprising a substrate, a plurality of gate lines on the substrate, a plurality of data lines on the substrate, an active display region having a plurality of pixels defined by the plurality of gate lines and data lines, and at least two repair lines partially positioned on the active display region and separated from each other. The repair lines are constructed in respective closed loops, the closed loops being mutually displaced and being electrically connected in parallel to each other by means of bridge structures. At least one of the bridge structures is positioned under one of the plurality of gate lines with a first insulating layer therebetween. The loop is formed by two longitudinal lines and two transverse lines which are arranged substantially in parallel to respective geometrical borders of the display area. The longitudinal lines are located in the non-display region or outside the active display region without overlapping the data lines. The transverse line has a protrusion in a first region under the data line, said first region being different from a second region where the gate line is arranged. The bridge structure interconnecting the loops extends over corresponding longitudinal lines of the adjacent repair lines while a second insulating layer is arranged between the bridge structure and the repair line.
In cases when a data line has an electric malformation, for example an opening, it can be repaired by electrically connecting the end portions of the data line to respective suitable repair lines from the provided loop thereby providing an alternative path for a signal. Then the original loop is cut for enabling proper electrical circuitry.
It is a disadvantage of the known display structure as described in U.S. Pat. No. 6,327,007 B1 that only electrically interrupted lines may be repaired. It is an additional disadvantage of the known display panel that electrically conducting repair lines are separated from the gate and data lines of the active matrix by an additional electrical insulating layer. Possible defects in additional insulating layer may lead to unwanted shorts.
It is an object of at least some embodiments of the invention to provide a display panel controllable by an active matrix drive, whose electrical malformations are easily and reliably repaired without inducing undue complexity to layer architecture of the display panel.
To this end, according to the invention, in the display panel controllable by an active matrix drive comprising at least one structural element, the at least one structural element comprises a plurality of sub-units whose electrical connectivity is alterable for repairing an electrical malformation related to the structural element.
By suitably multiplexing a structural element by providing a plurality of sub-units or sub-portions thereof, an electrical malformation, like an opening in an electrical circuitry or a short in the electrical circuitry may easily and reliably be repaired. The plurality of the sub-units or sub-portions may be at least partially integrated in the electrical circuitry of the active matrix drive so that a sole operation, for example, cutting in case of a short or connecting in case of an opening, is sufficient for repair.
It is an advantage of the display panel according to the invention that use is made of electrically insulating layers present in the architecture of the display layer for enabling repair possibilities and, therefore, no additional electrically insulating layers are necessary.
It will be appreciated that in the display panel known from U.S. Pat. No. 6,327,007 B1 the repair loop is an autonomous structure that is not at least partially electrically connected to either the gate line or the data line thereby necessitating first a proper connection of a data line or a gate line to the repair loop followed by cutting of the loop to enable a proper electrical path. In addition, the known repair loop is not suitable for repairing a short in the electrical circuitry of the active matrix drive.
Another embodiment of a display panel of the type generally set forth above is known from U.S. Pat. No. 5,744,821. In this embodiment, open data lines can be repaired using the so-called electrically conducting black matrix layer as is needed in LCD displays having a backlight to prevent backlight shining through non-switchable pixel areas. The black matrix layer is based on an opaque conducting area, that is separated from the gate electrode layer and from the source and drain electrode layer by one or more insulating layers.
It is a disadvantage of the known display structure as described in U.S. Pat. No. 5,744,821, that it assumes/requires the use/presence of a black matrix layer in combination with an insulating layer, separating the electrically conducting black matrix layer from the gate layer and the source and drain layer. In many display types, however, such a black matrix layer is not needed and not used.
Still another embodiment of a known display panel of the type generally set forth above is known from US 2007/0224742 A1. In this embodiment a portion of the pixel electrode is located above the data line, the data line having a repairing portion extending from the line. In cases where the pixel electrode is disconnected from the active matrix switch, the repairing portion of the data line can be utilized to electrically connect the pixel electrode to the data line.
It is a disadvantage of the known display structure as described in US 2007/0224742 A1 that after being repaired by connecting the pixel electrode to the data line, the pixel unit will change continuously with the high frequency caused by the driving signal of the data line. Hence the information presented by the repaired pixel will be an average of the information on the column line of the display.
In at least some embodiments of the display panel according to the invention the at least one structural element is selectable from the group consisting of: a storage capacitor, an active element, an electrically conducting line and an electrically conducting pixel electrode region. Various examples of active elements can be given, like for example diodes (including TFDs (Thin Film Diodes)), FETs (Field Effect Transistors), MIM (Metal-Insulator-Metal)-switches, and optical switches. One type of FET that is often used is the so-called TFT (Thin Film Transistor)
It is found that by suitably multiplexing one or more of these structures, electrical malformations in the electrical circuitry of the active matrix drive may easily be repaired without inducing undue degradation of electrical properties of the active matrix drive.
For example, in an embodiment of a display panel according the invention, the at least one structural element may relate to a storage capacitor, the storage capacitor being arranged as a plurality of capacitive units electrically interconnected by repair lines.
As a result, when a short circuit is detected in one of the capacitive units, the capacitive unit may be disconnected by cutting, for example by laser cutting, not interfering with further capacitive units. This leads merely to a slight decrease of an integral value of the storage capacitance. This is advantageous with respect to a commonly applied repair procedure wherein a short circuited capacitor is disconnected in its entirety.
In a further exemplary embodiment of the display panel according the invention the at least one structural element relates to an active element like for example a TFT, wherein a first TFT and at least a second TFT are provided, wherein at least one TFT is electrically redundant.
In general, each pixel of the display panel is commonly provided with a single TFT for driving the pixel, with a given channel width W and a channel length L. The source is the electrode connected to the data line, also referred to as column line. The drain is connected to the pixel electrode. The gate is connected to the gate line, also referred to as row line, or select line, or scan line. A short created inside the TFT can lead to a short between the gate and the source resulting in a line defect; or a short between the source and drain resulting in a pixel defect, or a short between the gate and drain resulting in a pixel defect. In accordance with at least some embodiments of the invention the TFT structure is multiplexed by providing at least two TFT structures, one of which may be electrically redundant. It will be appreciated that the term ‘electrically redundant’ used in the context of the present application relates either to a structure which is at least partially connected to existing electrical circuitry of the active matrix drive, or a structure which fully forms an electric path in the electrical circuitry of the active matrix drive.
Preferably, a TFT structure is multiplexed by sub-dividing a single TFT structure yielding the first TFT and at least the second TFT. For example, a single TFT, having a channel width W and channel length L may be sub-divided into x smaller TFTs, for example, each having a channel width W/x and a channel length L. In this way the multiplexed TFT forms part of existing electrical circuitry of the active matrix drive, which may minimize a number of operations necessary for repairing a short circuit associated with the TFT structure. Alternatively, it is not necessary to have a sub-division into a multiple of identical smaller TFTs, any division into multiple numbers of TFTs that add up to a total channel width (W) over channel length (L) ratio is possible. For example a single TFT with a W/L ratio of 500 micrometer/5 micrometer (W/L=500/5=100/1) can be divided into 4 identical TFTs each having a W/L ratio of 125 micrometer/5 micrometer in parallel or into for example 3 different TFTs in parallel, the first of which having a W/L ratio of 150 micrometer/7.5 micrometer, the second having a W/L ratio of 250 micrometer/5 micrometer, and the third having a W/L ratio of 300 micrometer/10 micrometer.
It will be appreciated that an absolute dimension of a short in electrical circuitry may have a greater value than a dimension of a TFT structure making it difficult to enable repair thereof in an easy way. In accordance with a further embodiment of the display panel according to the invention, the first TFT and at least the second TFT are mutually displaced by a distance along a gate line, said distance being larger than a dimension of the TFT along the gate line. Alternatively or additionally, the first TFT and at least the second TFT are mutually displaced by a distance along a data line, said distance being larger than a dimension of the TFT along the data line. In these ways laser repair by cutting off either a first TFT or the second TFT may easily be implemented without damaging electrical integrity of further components of the active matrix drive.
In a still further embodiment of the display panel according to the invention the at least one structural element comprises the electrically conductive line provided with portions interconnected in a loop.
It is found that another origin of defects may arise from short circuits between crossing gate lines and source lines. In the state of the art no solution for this problem is provided so far. In particular, known solutions comprise providing an additional layer between a gate line and a drain line, which is possible for TFTs wherein a semiconductor layer is arranged between the gate and the source/drain layer. For coplanar structured TFTs, for example for bottom-gate or for top-gate TFTs, additional processing steps are required in order to make crossings less susceptible to shorts and to enable repair possibilities.
In accordance with at least some embodiments of the invention, a portion of the line in a region of the crossing is multiplexed by a closed loop to enable electrical repair of a short in the crossing by cutting one of the loop arms.
In a still further embodiment of the display panel according to the invention, the pixel electrode is connected to a drain of the TFT and includes two or more sub-pixel segments electrically interconnected by repair lines.
It is possible that a short is created between neighboring pixel electrodes. A conventional repair method, as known from the art, usually comprises an extensive laser cut along a curved line dissecting a short pixel portion. In accordance with the invention, the pixel electrode includes two or more sub-pixel segments electrically interconnected by repair lines. As a result a simple repair of electrical short is envisaged by dissecting a short-cut pixel segment through cutting of a corresponding repair line.
Preferably, the display panel, according to at least some embodiments of the invention, relates to a reflective display type or a top-emitting Organic Light Emitting Diode (OLED) display type.
This feature is based on the understanding that the backplane of a display panel operable by an active matrix drive contains a plurality of pixel units which drive the display effect layer, for example a reflective electrophoretic display effect, or a reflective Liquid Crystal Display effect, or a reflective electrowetting display effect, or a reflective cholesteric Liquid Crystal effect. The active matrix drive, also referred to as active matrix backplane, comprises a stack of different layers, wherein the top display effect layer may comprise about 95% of the total display area and may substantially cover different layers of the backplane. Usually, the backplane comprises a storage capacitor, a column line, a row line, an active element, like for example a TFT and a pixel electrode connected to the active element which can cover the storage capacitor, the column line, the row line and the active element. The reflective display does not have a limitation regarding spatial constrains for placing repairable structures. Therefore, particularly for the reflective displays the structural elements of the active matrix drive may easily be multiplexed for enabling a simple and reliable repair of an electrical malformation associated with a structural element. In addition, the picture element according to the terms of the present application may relate to a pixel or a dot (also referred to as a sub-pixel), the latter being applicable to color displays.
It is preferred to design the active matrix drive in a way that the repair locations are positioned in regions that do not interfere with critical layers underneath or on top of the repair locations. By defining the actual repair locations at which cutting or welding is done in case repair is needed, one is able to ensure that no critical layers are located underneath or on top of the potential cutting or welding positions. In this way the risk of creating unwanted cutting or welding of other critical layers is eliminated.
In a further embodiment of the display panel according to at least some embodiments of the invention, a first electrode layer is superposed by a second electrode layer, said first and second electrode layers being electrically isolated by a dielectric layer, wherein the at least one structural element relates to an electrode region of the first electrode layer and/or the second electrode layer, the electrode region of the first electrode layer being partially overlapping with the electrode region of the second electrode layer.
In the backplane of the display panel, each electrode layer usually defines several parts of the electronics circuit. For example, a first electrode layer may define part of the storage capacitor, the gate pad of the TFT and the gate line; while a second electrode layer may define the source and drain pads of the TFT, part of the storage capacitor and the source line. In manufacturing, it is possible that unwanted lateral short circuits occur within a single electrode layer. In accordance with at least some embodiments of the invention, redundant electrode regions in the first layer are created, said regions being at least partially overlapping with the second electrode and being electrically isolated there from by a dielectric layer. When a lateral short occurs in the first electrode layer, it is possible to repair it by disconnecting a defective part in the first layer by laser cutting in suitable areas of the first layer and by creating a shunt contact using the second layer in the region of overlap. This embodiment will be discussed in more detail with reference to the Figures. It will be appreciated that such overlap may be envisaged either for the gate line and the source line.
A method of manufacturing a display panel comprising a picture element controllable by an active matrix drive comprising at least one structural element, comprises the step of providing the at least one structural element with at least one redundant unit.
Further advantageous embodiments of the method according to the invention are set forth in the claims.
These and other aspects of particular exemplary embodiments of the invention will be further discussed with reference to Figures wherein like reference signs relate to like elements. It will be appreciated that Figures and associated written description are presented for illustrative purposes.
While the appended claims set forth the features of the present invention with particularity, the invention, together with its objects and advantages, may be best understood from the following detailed description taken in conjunction with the accompanying drawings of which:
The different layers may be manufactured in a process, in which small defects may occur due to particles, impurities or other artifacts in the process and the materials used. These defects can lead to problems like broken conducting lines, unwanted conducting areas or unwanted open spots in dielectric layers. All these problems can lead to defective pixels, resulting in a pixel unit or a series of pixel units to be continuously on or off, or a pixel unit that displays the same information as the neighboring pixel unit to which it is connected via an electrical short.
Defects can occur due to, for example,
a) a defect between different electrodes; for example:
b) unwanted open area in a row line or a column line or any other conductor; or
c) unwanted open areas in insulating dielectric layers which separate two conducting layers, which may result in a vertical short.
In general, a storage capacitor is included in each pixel element to reduce voltage leakage inside the pixel, either due to the off-current of the TFT or due to leakage within the pixel through the display medium. For a conventional Active Matrix-Liquid Crystal Display (AM-LCD) a ratio of pixel capacitance versus storage capacitance amounts roughly to 1:1 as the resistance of an LC layer is high enough to avoid too much leakage. In the case of an electrophoretic display, however, the resistance of the electrophoretic capsule is relatively low, resulting in the need for a substantially larger storage capacity, resulting in a ratio between the capacitance of the electrophoretic capsule and storage capacitance of up to 1:20. Using other display effects like the so-called electrowetting, switching between two different states will change the pixel capacitance strongly, which can create unwanted electrical and optical artifacts. By adding a large storage capacitor to each pixel, the large variation in capacitance during switching between two states can be damped. A larger storage capacitor results in a design with a larger overlapping area between two electrodes constituting the capacitor. The larger overlapping area increases the risk of short circuit between the electrodes of the capacitor.
Another type of display that can be used is called a top-emitting Organic Light Emitting Diode (OLED) display. For displays having many pixels, OLED displays are also driven using an active matrix backplane. An example of a backplane circuit for an OLED-type display is given in item 10b of
A simplest layout of an active matrix OLED display contains pixels having a 2T-1C circuit each, i.e. two TFTs (a drive-TFT and a select-TFT) and a storage capacitor ‘Cs’, as shown in
The circuitry of the active matrix backplane of the top-emitting OLED can also be optimized to enable repair, as the light emission takes place away from of the pixel electrode defined by the backplane.
For example, turning to item 20b, the first electrode layer of the storage capacitor may be deposited in the same layer that defines the gate line and gate pad of the TFT; the second electrode layer may be defined in the same layer as the source and drain electrodes of the TFT. Between the first and second electrode layer a dielectric is placed to act as dielectric of the storage capacitor. In the prior art, item 20a, the storage capacitor is defined by area ‘a’. When a short occurs between both electrodes a pixel defect is created. The only possible repair is removing the connection by applying a cut for example by a laser on position c or c0. The pixel is then separated from the storage capacitor, thus artifacts upon driving are introduced in the pixel that are otherwise strongly reduced by the storage capacitor. Trying to apply a cut in the overlapping area ‘a’ in item 20a (see, view A) will mostly result in additional shorts as the cutting will result in some kind of welding the two conducting layers.
In accordance with illustrative embodiments of the invention depicted in views B, C and D of
When a short between the first and second electrode occurs in for example part b3, a cut at position c3 in 20b separates the short circuit part from the rest of the intact storage capacitor, or alternatively a cut at position c3′ and c4′ or at c7′ and c8′ in 20c, or alternatively a cut at position c3″ or c4″ in 20d. In this way only a small reduction in storage capacitor occurs, hence the switching behavior of the pixel is less affected. When a short between the first and second electrode occurs in for example part b2, a cut at position c2 in 20b separates the short circuit part from the rest of the intact storage capacitor, or alternatively a cut at position c2′ and c3′ or at positions c6′ and c7′ in 20c, or alternatively a cut at position c2″ in 20d. When a short between the first and second electrode occurs in for example part b1, a cut at position c1 in 20b separates the short circuit part from the rest of the intact storage capacitor, or alternatively a cut at position c1′ and c2′ or at positions c5′ and c6′ in 20c, or alternatively a cut at position c1″ in 20d. In this way only a small reduction in storage capacitor occurs, hence the switching behavior of the pixel is less affected. Preferably, the active matrix drive structure is designed in such a way that no critical layers are positioned underneath or on top of the regions that can be cut.
It will be appreciated that just adding a second TFT will increase the kick-back due to an increase in stray capacitance between the gate and drain electrode. This may lead to optical artifacts. In addition, placing a second TFT close to the first TFT increases the risk that the shorting area covers both TFTs, in which case no repair is possible.
As a result, a design, shown in 30b, provides a solution to overcome both problems whilst having a repair possibility the moment a short occurs in the TFT. Each pixel is provided with 2 TFTs one of which (TFT2) may be not yet connected to the drain. In addition, a small conducting pad ‘d’ may be provided in the first electrode layer, partly overlapping the drain of the pixel and the drain finger of the TFT2. In case a short appears in the connected TFT1; this TFT1 can be disconnected by a cut at position c6 only in case a short is formed between gate and drain, or cutting c7 and/or c8 in case a short is foamed between the source and gate. This is followed by connecting TFT2 to the drain via the pad ‘d’ by laser welding at positions w1 and w2. It is also possible to have one of the two connections w1 or w2 already made applying a contact hole in the dielectric layer between the two electrode layers, thus only requiring applying laser welding at the non-contacted area w2 or w1. In
An embodiment, shown in item 30e depicts an alternative embodiment of the embodiment 30b. In this case the gate pad of the TFT2 is not connected to the gate yet. In this design the kickback effect is also kept low. Also arrangement 30e provides a solution to overcome both problems, namely repair and reduced kick-back, whilst having a repair possibility the moment a short occurs in the TFT1. Each pixel is provided with two TFTs one of which (TFT2) may be not yet connected to the drain and/or may be not yet connected to the gate. In addition, two small conducting pads are provided, one in the first electrode layer (‘d’) partly overlapping the drain of the pixel and the drain finger of the TFT2 and the other in the second electrode layer (‘e’) partly overlapping gate. In case a short appears in the connected TFT1; TFT1 can be disconnected by laser cut at position c6 only in case a short is formed between gate and drain, or cutting c7 and/or c8 in case a short is formed between the source and gate. This is followed by connecting TFT2 to the drain via the pad by laser welding at positions w1 and w2 and connecting the gate pad of TFT2 by welding w3 and w4. It is also possible to have one of the two connections w1 or w2 already made applying a contact hole in the dielectric layer between the two electrode layers, thus only requiring applying laser welding at the non-contacted area w2 or w1. In addition, it is also possible to have one of the two connections w3 or w4 already made applying a contact hole in the dielectric layer between the two electrode layers, thus only requiring applying laser welding at the non-contacted area w4 or w3. In addition, an open defect in the source and or drain finger of TFT1 can be solved by cutting of TFT1 and connecting TFT2.
Another possibility to avoid defects caused by relatively large areas of potential shorting, is to distribute a TFT by splitting the TFT (having a channel width W and channel length L) into x smaller TFTs (each having a channel width W/x and channel length L) and placing them at some distance from each other. An example of placing a multiple of smaller TFTs in parallel is shown in item 30d. In case one of the four TFTs is shorted, it can be cut off, leaving the other three TFTs functional, hence the impact on the required on-current and the kick-back is limited.
Alternatively, redundancy can also be established using parallel TFTs, as shown in items 30c and 30f. A single TFT as shown in 30a is sub divided into a suitable plurality of TFTs, for example four TFTs as shown in item 30c, TFT7, TFT8, TFT9, TFT10. In principle, it is also possible to split the original single TFT (having a channel width W and channel length L) into x smaller TFTs (each having a channel width W/x and channel length L) and to place them at some distance from each other along the gate line. In case a short occurs in one of the four TFTs, laser cutting can separate the short TFT part while keeping the other TFTs operational. Depending on the type of short circuit, one can apply a laser cut between the gate pad of the short circuited TFT and the gate line, or apply a laser cut at one of the source fingers or at the drain finger. Item 30f schematically depicts another embodiment applying the same principle.
The further illustrative embodiments of the invention are based on the insight that it may be easier to perform automated laser repair when fixed repair areas are defined that can be laser cut the moment a short is detected. In accordance with an illustrative embodiment invention (see item 50b) a pixel comprises sub-pixels 51a, 51b, 51c, 51d and 52a, 52b, 52c, 52d which can be disconnected by a laser beam, without the need for an extensive laser beam cut process. This will decrease the required repair time, and hence increase the repair speed. Also in
By splitting each pixel electrode into smaller inter-connected sub-units, all of which are connected to the drain of the TFT, it is possible to disconnect such a small pixel portion, that the resulting change is not visible to the bare human eye thereby not affecting perceptible characteristics of the display panel according to the invention.
It is possible to optimize the wiring of the non-connected conductor with respect to the actual ‘floor plan’ of the various structures within the same electrode layer. For example region ‘s1’ is in the same electrode layer as the column line, but this region should not directly contact the column line. Region ‘s2’ may be located in the same layer as the row line.
This approach is also applicable in cases conventional laser cutting may lead to unwanted damage of structures that are located below the area that needs to be cut.
As shown in view B, the proposed repair structure can also be used to repair a broken (also called ‘open’) line. Suppose ‘gate2’ line is broken at position ‘o’. This open can be repaired using ‘z2’ structure and laser welding the z2 structure to ‘gate2’ at positions ‘w3’ and ‘w4’.
The above solutions can be used for active matrix based TFT arrays, either using inorganic or organic semiconducting material. Most commonly used metals are gold (Au); aluminum (Al), chromium (Cr), molybdenum (Mo), tantalum (Ta), tungsten (W), copper (Cu), titanium (Ti), manganese (Mn), nickel (Ni), niobium (Nb), neodymium (Nd) silver (Ag) or multilayer of different of the mentioned metals or alloys of metals. Even though, in the description a reference is made to pixels, it will be appreciated than any picture element may fall under this definition, in particular, conventional pixels or dots, like used in a color display are contemplated herewith.
It will further be appreciated that laser repair, as discussed above, is often done using a laser like a pulsed YAG laser, operating at 1.06 μm wavelength using pulses of 8 ns, having a power density of 20˜60 W/μm2. Alternatively a dye type laser tunable to a range of different wavelengths from 0.34 to 1.2 μm can be used.
It will be appreciated that while specific embodiments of the invention have been described above, that the invention may be practiced otherwise than as described. In addition, isolated features discussed with reference to different embodiments may be combined.
Number | Date | Country | Kind |
---|---|---|---|
2002936 | May 2009 | NL | national |