This application claims priority to Republic of Korea application number 10-2007-0109930, filed on Oct. 31, 2007, which is hereby incorporated by reference in its entirety
The present invention relates to a method for manufacturing a composite sabot, and more specifically, to a method for manufacturing a fiber-reinforced composite sabot for use in APFSDS (Armor Piercing Fin Stabilized Discarding Sabot) wherein short fibers are deposited on the interface of material in order to improve adhesiveness of material in order to prevent prepreg delamination phenomenon in the circumferential direction caused by the radial lamination.
Aluminum alloy is generally used for manufacturing the sabot for the APFSDS which is used for antitank guns. However, by using the high-strength fabric-reinforced composite material having lower density than the aluminum on the sabot, the speed of the shell can be increased with the same energy thereby enhancing the power of the shell. Therefore wide range of research has been made in the field to manufacture lighter and better sabot by replacing the metal sabot with polymer based fiber-reinforced material having specific strength.
The sabot is combined to the outer diameter of the penetrator with three separated pieces and guides the sabot in the gun barrel, delivers the propulsive force to the penetrator, and is separated from the penetrator after the penetrator is propelled from the barrel playing the role of structurally supporting the sabot and preventing leakage of pressure from the barrel. Therefore the weight of the sabot is very important in improving the performance of the whole system, so by making the sabot as light as possible, more of propulsive force is delivered to the penetrator ensuring stable flight of the penetrator.
Also, in order to deliver the propulsive force to the penetrator more efficiently, inner part of the sabot is formed a concave-convex combining surface in the form of spiral or groove in the contacting surface with the penetrator. The outer part of the sabot is formed so that the sabot closely contact the barrel sealing the barrel so that the pressure for the propulsive force is maintained. After the penetrator is separated from the barrel, the sabot is separated from the penetrator through friction with the air without affecting the propulsion of the penetrator.
The sabot made by the conventional method is made from aluminum and although presents no problem in endurance considering the shearing stress required at the time of propulsion, relatively high weight compared to the composite sabot causes problem in important properties of the penetrator such as aviation velocity, penetration strength on the target and other overall properties of the system.
Also, since lamination in the radial direction has been reportedly adopted since the conventional lamination method in axial or circumferential direction cannot obtain the required mechanical strength of the groove. Lamination in the radial direction uses prepreg made of unidirectional fiber or fabric fiber/resin, and prepreg ply is laminated in orthogonal direction on the groove surface contacting the penetrator providing much improved shear strength compared to the above mentioned conventional lamination method in axial or circumferential direction. However, while the required strength in the same or orthogonal direction of the contacting the penetrator is obtained in the radial direction lamination, there is a problem of low adhesive strength in the direction in which the prepreg ply is laminated, and so there has been need for developing technology that can improve this strength.
Until recently, the patent application relating radial directional lamination has been directed to the lamination technology or orientation of the fiber, for example U.S. Pat. No. 5,640,054 (Sabot segment molding apparatus and method for molding a sabot segment), and U.S. Pat. No. 5,789,699 (Composite ply architecture for sabot) and U.S. Pat. No. 6,125,764 (Simplified tailored composite architecture).
The method of using high strength resin can be considered in order to reinforce the material property in the laminating direction, but the cost will be increased due to the high price of the material and complex manufacturing method.
The previous composite sabots manufactured only in the radial or circumferential laminating method generated the delamination phenomenon from the severe bending of fiber. Accordingly, applying the band lamination and the hoop lamination on the external layer of radial lamination made it possible to endure from the high expansion power to operate in the circumference direction in shooting the shells. Also the lamination improving the previous segment lamination shape made the surface of 120° not to be damaged in the process of sabots.
The present invention has been designed to solve the above mentioned problems of prior arts. In order to prevent delamination of the radially laminated composite sabot, short fibers are deposited at every stage of manufacturing on the interfacial plane of material thereby spreading the expansion force in the circumferential direction to fiber as well as to the resin. In this way, the adhesiveness of the sabot in the circumferential direction is enhanced and novel method for manufacturing a composite sabot can be developed that can protect the sabot from high pressure of explosion and can ensure unstable separation of the sabot thereby enhancing the performance and reproducibility of the sabot.
To solve the above problems of the prior arts, the present invention provides a method for manufacturing a fiber-reinforced composite sabot by laminating the prepreg fiber in the radial direction comprising a sub-segment forming step wherein four or more of sub-segments are formed with predetermined form by superposing a plurality of plies; a segment forming step wherein three or more of segments are formed by laminating said sub-segments; a piece forming step wherein three pieces are formed by laminating said segments; and a sabot forming step wherein a sabot is formed by combining said three pieces; the sub-segment forming step further comprises forming preliminary laminated board by superposing a plurality of plies and forming a sub-segment by cutting the preliminary laminated board into a predetermined form wherein the step of forming preliminary laminated board includes forming a preliminary laminated board by depositing a short fiber between each ply when laminating a plurality of plies.
Also it is preferable that the segment forming step includes forming a segment by depositing a short fiber between each sub-segment when laminating sub-segments.
Also preferably the segment forming step can further comprise depositing a short fiber on the inclined plane of the laminated sub-segment and further laminating reinforcement sub-segment.
Further, the piece forming step can include forming a piece by depositing a short fiber between each segment when laminating segments.
Finally, the short fiber can be one or more of fiber selected from the group consisting of carbon fiber, graphite fiber and glass fiber, and the prepreg fiber material laminated in the radial direction is one or more of fiber selected from the group consisting of carbon fiber, graphite fiber and glass fiber, and the fiber prepreg fiber material is thermosetting or thermoplastic resin.
According to the method for manufacturing a fiber-reinforced composite sabot with improved interfacial characteristics by using short fiber, the weight of the sabot can be reduced by 30% compared to conventional aluminum sabot. By improving the adhesiveness in the radial direction by depositing short fiber, the sabot is protected from the expansion pressure resulting from the high impact energy inside the barrel, providing optimal design requirement that can endure the destructing force of the sabot.
a is a perspective view showing a plurality of plies composing a preliminary lamination plate.
b is a cross-sectional view showing a plurality of plies composing a preliminary lamination plate.
a shows the configuration of the sub-segment composing a segment.
b is a cross sectional view showing laminated sub-segment.
c is a perspective view of a segment composing a piece.
a is a perspective view showing the piece composing a sabot.
b is a cross sectional view showing the piece composing a sabot.
Example of the present invention will be described with reference to the drawings attached.
In the perspective view of
Basic plate 10 and release plate 20 are separated from the fiber prepreg ply 30 produced, and two or more of plies 30 are laminated in the order considering the angle of orientation as shown in
This superposed plies can be used to form a sub-segment with predetermined form, or, more preferably, can be used to form a preliminary laminating plate 40 by superposing a plurality of plies as shown in
The sub-segment thus formed is laminated into the form of segment 80 shown in
In a continuous way, the short fiber 50 is deposited again on the surface of the reinforcement sub-segment 71 of each segment 80, and other segment 80 is laminated by attaching to form the piece 90 shown in
The piece 90 composed of segment 80 as shown in
Lastly, the three pieces 140 prepared by the above method is inserted into press mold to form fiber reinforced composite sabot 160 as shown in
In the composite sabot laminated in this way, the expansion force which has been applied to the resin only is spread among the fabric and the required mechanical strength is met so that the delamination due to the explosive pressure 110 from the barrel can be prevented.
Although the preferable example of the present invention has been described above, it should be understood not to limit the scope of the present invention and any modification can be possible to those skilled in the art within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2007-0109930 | Oct 2007 | KR | national |