This application is a 371 of International Application PCT/FI2014/050176 filed 10 Mar. 2014, which claims priority from FI Application No. 20135234 filed on 11 Mar. 2013, the disclosures of which are incorporated in their entirety by reference herein.
The invention relates to a method for the continuous manufacture of a flexible composite belt or cable by pultrusion or by a continuous lamination process.
The products manufactured according to the method of the invention can be utilised in various applications where, for example, steel cable has been previously used. Applications include, for example, the cables of elevators and other lifting equipment, or the cables of conveyor lifts, load-bearing cables and the power transmission solutions, such as belts, of various machines and equipment. The patent publication FI-122261 discloses examples of elevator cables which can be manufactured with the method according to the invention.
The advantages of the belts or cables manufactured by the method according to the invention are that they are lightweight, non-slipping, have high tensile strength and fatigue strength, are non-creeping and properly controllable. The aim of the invention is to provide a method applicable to both online and offline production, by means of which flexible composite belts or cables can be manufactured economically and with high quality.
The accompanying claim 1 shows an online and offline production method and claim 2 shows an online production method. The main difference between these is that in offline production (claim 3), the product is wound on a reel after the pultrusion stage, on which the intermediate stage products, that is, the reinforced plastic profiles are temporarily stored before the next coating treatment.
The method according to the invention is illustrated in the following, with reference to the accompanying drawings, in which:
In the embodiment of
The reinforced plastic profiles are polymer composite profiles reinforced with continuous fibres. The amount of fibre in a composite is approximately 40-80%. Carbon and/or glass fibres are the fibres typically used. As a polymer may be, for example, polyurethane, epoxy, vinyl ester or polyester. In reinforced plastic profiles, thermosetting plastic or thermoplastic can be used as a matrix. The shape of the reinforced plastic profiles may be a flat bar, bar, pipe, plate, or the like.
At the coating stage 4, the reinforced plastic profiles 11 are guided at a short distance from one another to coating treatment which is carried out by extrusion or lamination or pultrusion.
At the coating stage, the product is given its final shape and, if necessary, the coating keeps the composite parts together and thus the coating material is selected according to the application. The coating also makes possible transverse flexibility of the product since the composite reinforcements consist of several separate profiles between which there is a flexible coating. This can be used to facilitate the product to remain, for example, in a wedge groove;
Layers acting as wear indicators may be added to the product also during coating. An additional layer may be a second coating layer or a reinforcement, such as a reinforced mat or fabric.
When choosing the coating material, it should be taken into account that the coating material 12 also joins the reinforced plastic profiles 11 together, whereby a finished belt or cable 10 with a coating is formed. At the coating/lamination stage 4 are used guides 13 (
Finally, the finished belt or cable 10 is wound on a reel at stage 5. The final flat bar type profile can be further processed further by using individual coated profiles as strands which form a wire or cable.
The offline production shown in
In the embodiments of
The invention may be applied as follows.
During the coating treatment 4, a reinforcement is added for improving the properties of the coating material. During the coating treatment 4 is added a cable, an optical fibre or an electroconductive material layer, which add the possibilities for making measurements, for monitoring and analysing the condition, wearing and aging of the composite belt. After the coating treatment 4, the combination can be subjected to surface treatment.
Several composite belts may be gathered together to form a solid multi-strand wire. In connection with the coating treatment, a pattern can be made on the surface, which provides the cable with a mechanical grip on the driving wheels and/or improves visual condition monitoring.
The coating treatment can be made in several layers. The layers may be of different materials or of different hardnesses of the same material (co-extrusion). If so desired, the reinforced plastic profiles may be pretreated, which improves adhesion between the reinforced plastic and the coating.
The reinforced plastic profile is preferably coated with a flexible elastomere, which facilitates transverse flexibility and makes it possible to change the cross-sectional geometry of the product to match the application. Due to the elastic body, the profile may be an opening one or one which folds into shape. The reinforced plastic profiles are guided precisely into the thermoplastic coating, whereby their position in the final product geometry may be adjusted as desired. The method is used to manufacture a carrier cable for an elevator.
A composite profile may be designed in the desired manner and the coating may be applied to only a part of the reinforced profile. Different reinforced profiles may be guided into the coating and they can be positioned as desired in the lateral and perpendicular directions. At the coating stage, a tooth-like wedge surface can be made in the product, which helps the product to stay in the wedge groove.
Pultrusion uses parallel straight reinforced fibres and in the process other reinforcing materials may also be added on the surface of the product.
Number | Date | Country | Kind |
---|---|---|---|
20135234 | Mar 2013 | FI | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FI2014/050176 | 3/10/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/140424 | 9/18/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4624097 | Wilcox | Nov 1986 | A |
8632651 | Hicks | Jan 2014 | B1 |
20020000346 | Baranda | Jan 2002 | A1 |
20020150752 | Debalme et al. | Oct 2002 | A1 |
20100032081 | Green | Feb 2010 | A1 |
20110000746 | Pelto-Huikko | Jan 2011 | A1 |
20120195733 | Bruch et al. | Aug 2012 | A1 |
20120297746 | Chou | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
104924640 | Sep 2015 | CN |
0152 510 | Dec 1981 | DE |
38 1338 | Nov 1989 | DE |
102011005323 | Sep 2012 | DE |
102011005329 | Sep 2012 | DE |
3 009 390 | Apr 2016 | EP |
122261 | Nov 2011 | FI |
2001-302135 | Oct 2001 | JP |
2006001702 | Jan 2006 | WO |
2009026730 | Mar 2009 | WO |
2010048736 | May 2010 | WO |
2011148033 | Dec 2011 | WO |
2013140038 | Sep 2013 | WO |
Entry |
---|
Translated DD 0152510. |
Machine translation of DE 38 13 338 A1. |
English_Abstract_of_DE102011005323A1. |
English_Abstract_of_DE102011005329A1. |
English_Abstract_of_JP2001302135A. |
English_Abstract_of_WO2010048736A2. |
FI Search Report dated Dec. 23, 2013. |
Search Report dated Sep. 23, 2016 for Application No. EP 14 76 2499. |
Espacenet English abstract of DE 38 1338 A1. |
espacenet English abstract of CN 104924640 A. |
Number | Date | Country | |
---|---|---|---|
20160016757 A1 | Jan 2016 | US |