The present invention concerns a method for manufacturing a domestic gas burner of the type comprising a cup which is provided with at least one tubular tapered part of a mixer with axial Venturi effect, and preferably with the whole part with increasing section of such a mixer, and which is shaped as well to couple directly with a burner head provided with at least one flame-spreader.
It is known in the art to realize gas burners, in particular domestic burners for cooking foods, that are substantially shaped in three or four separated parts which may be mutually assembled. In particular, it is known to realize gas burners composed of a cup, provided with coupling means to a hob, an intermediate body, or burner head, provided with one or more delivering chambers of the fuel mixture and at least one flame-spreader, integral with or separated from such an intermediate body, and with one or more closing lids. The cup is usually provided, as well, with means for feeding a fuel gas, or directly a fuel mixture, to the delivering chamber/chambers of the intermediate body and, in a lot of cases, it may be provided with a mixer, or part thereof, to mix the fuel gas with primary air coming from the outer environment.
Mainly in case wherein the burner is required to delivery a high thermal power, it is known to make at least one mixer with axial Venturi effect, having an horizontal axis or an axis tilted with respect to the horizontal line, connected to the burner cup, which has, as well, a support for at least one corresponding injector of the fuel gas arranged so that to direct the gas flow into such a mixer with axial Venturi effect.
The carrying out of a mixer with axial Venturi effect inside the burner cup, which is substantially a hollow tubular element provided with at least one region with a section gradually increasing from a region with a narrow section, usually needs the fastening of a number of metal parts, for example by welding, and/or complex chip removal machining, starting from one or more semi-finished items obtained by casting or die-casting.
In fact, the coupling of a hollow tubular body, as the mixer with axial Venturi effect, with a concave body, such as the cup, entails the presence of undercuts, and then it is not simple to be realized, above all if a cup in a single piece, or with the assembling of few components, is to be made. In this latter case, it is thus common to obtain a cup, by a casting or die-casting method in an apposite mould, in which the mixer with axial Venturi effect is made, completely or in part, separately from the cup and then it is inserted in the latter, and fastened thereto, only after these components have been die formed.
Such a method for manufacturing a gas burner with a cup provided with a mixer with axial Venturi effect, proves to be difficult to be implemented, complex to realize and very expensive.
It is then an object of the present invention to realize a method for the manufacturing of a burner provided with a cup having at least one tubular hollow part of a mixer with axial Venturi effect which does not present the drawbacks of the known previous art and then which allows to manufacture such a burner simply and not excessively expensive.
It is another object of the present invention to provide a method for the manufacturing of a burner provided with a cup having at least one part of the tubular region with an increasing section of a mixer with axial Venturi effect which leads to the manufacturing of a cup in a single piece, that thus has very resistant structure, and at the same time it is suitable for a gas burner designed to deliver a high thermal power.
It is another object of the present invention to realize a gas burner of the above mentioned type in which the cup, provided with at least part of the tubular region with an increasing section of a mixer with axial Venturi effect, is obtained as a whole by casting or die-casting, so that, in addition to be quick and easy to manufacture, it is also highly resistant from a mechanical point of view.
These and other objects are obtained by the method for manufacturing a gas burner according to the first independent claim and the subsequent dependent claims and by the gas burner according to the twelfth independent claim and the subsequent claims dependent thereto.
The method for manufacturing a gas burner of the type comprising a cup, provided with at least one tubular tapered part of a mixer with axial Venturi effect, and shaped to couple directly with a burner head provided with at least one flame-spreader, according to the present invention, provides that the cup is made in a single piece by casting or die-casting in an apposite mould, and it comprises, in sequence, the following steps:
Such a method, which substantially uses a mobile core (carriage) with a cantilevered portion inside the mould to obtain as a whole the mixer with axial Venturi effect with the rest of the cup, proves to be simple to be carried out and it allows to decrease appreciably times and costs necessary for the manufacture of the above mentioned burner.
According to a preferred aspect of the present invention, the manufacturing method of the above reported gas burner provides that the removable core comprises as well part of the strickle of at least one distributing duct of the fuel mixture placed downstream of the outlet end of the mixer with axial Venturi effect.
In case in which the burner in productions provides, specifically, the presence of an annular chamber for delivering the fuel mixture, and then the use of one or more distributing ducts of the latter from the outlet end of the mixer with axial Venturi effect to such an annular delivering chamber is appropriate, the particular implementation of the above described manufacturing method proves to be highly inexpensive and effective.
In a particular embodiment of the manufacturing method of a gas burner herein claimed, the afore said step of f) applying at least one closing plug could be preceded by a step of g) chip removal machining from walls inside the tubular region of the cup, defined by the afore said at least one core, to realize, for example, a fluidic connection between the mixer with axial Venturi effect and the mixture distributing duct which are obtained thanks to the afore said removable core.
According to a further aspect of the present invention, the manufacturing method herein described concerns a gas burner in which the afore said mixer with axial Venturi effect comprises a tubular tapered portion with a section axially increasing from a region with a narrow section, and the afore said at least one jutting portion of the core is provided with the whole strickle of said tubular tapered portion with increasing section of the mixer with axial Venturi effect. In addition, preferably, such a core may comprise a supporting portion connected to the afore said jutting portion at the portion with greatest section of the afore said at least one tubular tapered part of the strickle of the mixer with axial Venturi effect.
According to another aspect of the present invention, a gas burner is provided, obtained by means of the above manufacturing method, comprising a burner cup, provided with at least one tubular tapered part of a mixer with axial Venturi effect, and shaped to couple with a burner head provided with at least one flame-spreader, wherein said cup is made in a single piece by casting or die-casting, and wherein at least part of the portion with increasing section of the mixer with axial Venturi effect is obtained as a whole, by casting or die-casting, with the afore said cup.
For purposes of illustrations and not limitative, some preferred embodiments of the present invention will be provided with reference to the accompanying drawings, in which:
Such a burner 1 comprises a cup 2 composed of a substantially concave body adapted to be placed inside a seat of a respective hob 3, a burner head 4 assembled—for example by juxtaposition of complementary parts—on the cup 2, two substantially concentric flame-spreaders 5, 6, disposed on the head of the burner 4, and top lids 7, 8 which enclose delivering chambers of the fuel mixture which are defined by the head of the burner 4 and the respective flame-spreaders 5, 6.
More in detail, the cup 2 comprises a mixer 10 of the axial Venturi effect type which, according to the known art, is substantially composed of a tubular body provided with an inlet region (on the left in
It has to be noted that with the attribute “tubular” it is meant, herein and in the following, the characteristic shape of a hollow body developing mainly along an axis that is generally, but not necessarily, a straight axis, and which has a section defined by a closed perimetrical line, that is not necessarily constant along such a developing axis.
Such a mixer 10, in the particular embodiment of the burner 1 herein shown, has a substantially straight axis which is tilted of some degrees with respect to the horizontal line, and it ends into an ending chambers 29 connected to two distributing ducts 15a, 15b, which extend along part of the perimeter of the same cup 2 and connect fluidically the cup 2 to an annular delivering chamber of the fuel mixture present on the head of the burner 4.
It has to be observed that the mixer with axial Venturi effect 10 may alternatively develop along a substantially horizontal axis or anyway along an axis forming an angle lower than 45°, in the clockwise or anticlockwise way, with respect to the horizontal line, so that its outlet end may be directed upwards or downwards with respect to the horizontal line, even if with a rather little tilt.
The ending chamber 29, as can be seen in
The cup 2 comprises as well a support 16 for a first injector of fuel gas which is facing towards the inlet region of the mixer 10 with the aim of putting gas into the mixer 10 itself, and which is separated from the afore said inlet region of the latter by an inflow well 17 of the primary air from the outer environment. The well 17, as can be seen in particular in
In the particular embodiment of the burner 1 herein shown, a tubular pierced body, for example being composed of a metal spiral spring 11, is placed between the support 16 of the injector and the inlet region of the mixer 10, inside part of the well 17, and has the function of preventing the possible propagation of flames coming from the well 17 itself into the mixer 10. Similarly, in the burner 1 herein shown, it is present another pierced tubular body, also preferably composed of a metal spiral spring 12, interposed between the outlet end of the mixer 10 and a bottom surface of the afore said ending chamber 29, having the function of preventing the possible propagation of flames coming from the ducts 15a, 15b connected to such a chamber 29. More in detail, it has to be observed that the spring 12, having the function of preventing the flame propagation inside the mixer 10, is assembled between the outlet section, that is the ending section of the tapered region with increasing section, of the same mixer with axial Venturi effect 10 and the central plug 14b of the ending chamber 29.
The cup 2 is further provided with a duct 28 and a support (not shown in figures) for a second injector, substantially with vertical axis, shaped to direct the fuel gas towards a mixer with radial Venturi effect 9 obtained in the head of the burner 4, as well as means 13 for constraining the same cup 2 to a hub 3.
Such a cup 2, according to the present invention, is made in a single piece by casting or die-casting and it is shaped to allow the head of the burner 4 to be assembled thereon firmly, for example thanks to the juxtaposition of complementary parts.
The head of the burner 4, also preferably obtained in a single piece, comprises the structure of a mixer with radial Venturi effect 9 placed in a central body defining part of a central delivering chamber of the fuel mixture, and an annular body, concentric to the central chamber, which has part of a chamber, annular too, for delivering the same fuel mixture.
The central chamber of the burner head is completed by a flame-spreader ring 6, provided with notches and/or holes for the outflow of the fuel mixture to be ignited, and by a top lid 8, which closes the chamber of the afore said central body and acts as upper wall of the mixer with radial Venturi effect 9.
The annular delivering chamber of the head of the burner 4 is defined, on the contrary, next to at least part of its side surface, by a flame-spreader 5, annular too and provided with notches and/or holes for the outflow of the fuel mixture, and by a top lid 7 which closes such an annular chamber. It has to be noticed that, in the particular embodiment of the burner 1 herein shown, the annular delivering chamber of the fuel mixture and the central delivering chamber are separated one from another, also if in another embodiments they could be fluidically connected one to another.
Alternatively, the herein described burner may have only one annular body defining, with a respective flame-spreader or lid, an annular delivering chamber of the fuel mixture, or only one central body which defines, with its flame-spreader or lid, only one central delivering chamber of the mixture.
It has further to be noticed that, in the particular burner 1 herein described, the afore mentioned annular delivering chamber of the fuel mixture of the head of the burner 4 is fed by the mixer with axial Venturi effect 10 obtained in the cup 2 thanks to the distributing ducts 15a, 15b, also obtained at least in part in the same cup 2, which communicate fluidically the same mixer 10 with such an annular chamber of the head of the burner 4 and then with the flame-spreader 5. On the contrary, as already described, the central chamber of the head of the burner 4 is fed by the mixer with radial Venturi effect 9, which is obtained in the same head of the burner 4.
In alternative embodiments, herein not shown, the mixer with axial Venturi effect 10 may feed both the delivering chambers of the fuel mixture of the head of the burner 4, or in any case any one of the one or more delivering chambers of the mixture present on the burner head.
Now referring also to
In particular, the burner 100 comprises a cup 102 provided with a mixer with axial Venturi effect and two distributing ducts, placed on part of the perimeter in plant of the same cup 102, and fluidically connected to the outlet end of the same mixer, a head of the burner 104 assembled by juxtaposing parts on the cup 102 and shaped with a central body and an annular body, as well as two flame-spreaders 105, 106 respectively defined by side walls of the afore said central body and annular body of the head of the burner 104, and two upper lids 107, 108,
As afore mentioned, the manufacturing of the burner 1 above, according to a preferred aspect of the present invention, provides that the cup 2, equipped with at least one tubular tapered part of the mixer with axial Venturi effect 10, but preferably equipped with the whole mixer 10, is realized in a single piece by casting or die-casting in an apposite mould.
In the same way, the manufacturing of the burner 100 too, represented in
Referring now to
Then (step (b)) at least one first core 30, shaped to be removably combined with the mould 40, has to be realized and arranged. As can be seen in
The core 30 comprises at least one jutting portion 22 reproducing the inner strickle of the mixer with axial Venturi effect 10, or at least one tubular tapered part thereof and which, as can be seen schematically in
According to a particular aspect of the manufacturing method of the present invention, such a jutting portion 22 of the core 30 is shaped to reproduce at least in part, but preferably at least the wholeness, of the tubular tapered region with a gradually increasing section of the mixer with axial Venturi effect 10 and, preferably, also the whole region with narrow section of the latter.
The jutting portion 22 of the core 30 is cantileverly supported, in the particular embodiment of the present invention herein described, by at least one supporting portion 21 of the same core 30, which is placed at one end of the latter and it is shaped as well to removably couple with the impression 31 of the mould 22 and thereby to retain juttingly, except for the possible engagement with the afore said support 32, such a portion 22 inside the same mould 40, as it is closed.
Then the supporting portion 21 of the core 30, being disposed just at one end of the latter, may be used to handle the core 30 itself during the introduction and the drawing out thereof from the mould 40, so that the core 30 is substantially a shaped carriage which could be driven to enter and exit from the mould 40 due to such a supporting portion 21.
In the following step (step c)) of the manufacturing method of a cup of a gas burner herein illustrated, the introduction of the core 30 into the two shells of the mould 40 is provided, and the closing thereof, before the subsequent step (step (d)) of injecting, or pouring, a metal material in the liquid (molten) state.
The fact that the core 30 could be inserted and drawn out from the mould 40 to realize the cup 2 (or 102), entails that at least an ending part of the core 30 replaces part of the perimetrical area of the cup 2 (or 102) which has to be obtained by means of the mould 40. This causes the formation of at least one hole 18a, 18b, 18c, or 118, inside the cup 2 (or 102) itself, corresponding to such an ending part of the core 30 which replaces part of the perimetrical area of the cup 2 (or 102).
Such an ending part, as it will be evident, may coincide with the supporting portion 21, creating only one hole 118 (see
It has to be observed that, according to a particular aspect of the present invention, the supporting portion 21 of the core 30 is connected to the respective jutting portion 22 at the part reproducing the strickle of the mixer with axial Venturi effect 10 having the greatest section, so that such a jutting portion 22 of the core 30 is tapered from its part connected to the supporting part 21 up to its free end which has a smaller section, corresponding to at least part of the region with narrow section of the mixer 10.
Such a free end of the jutting portion 22 of the core 30, according to another aspect of the present invention, may be supported inside the mould 40, as referred, by the afore mentioned seat 32, which could be preferably obtained at a projection 25, realized on the shell 20 and adapted to negative reproduce the afore said well 17. In this way, after the cup 2 has been drawn out from the mould 40, the strickle of the mixer with axial Venturi effect 10 reproduced by the jutting portion 22 of the core 30 is connected to the strickle of the well 17, defined by the lug 25 of the shell 20.
According to a particular aspect of the manufacturing method of a gas burner herein described, the jutting portion 22 of the core 30 comprises as well two bodies 23a, 23b which leave from that region of the core 30 defining at least the tubular tapered part with increasing section of the mixer with axial Venturi effect 10 and reproduce at least part of the strickle of the two distributing ducts 15a, 15b of the cup 2 (or 102).
As can be seen more in detail in
According to a particular aspect of the present manufacturing method of the cup 2 (or 102), before the step of (d) pouring or injecting a metal material into the mould 40, it is possible to realize and then to arrange (step (h)) at least one second core 24, which can also be removably inserted into the mould 40 and which comprises at least one jutting portion with at least part of the strickle of a duct, which may be, for example in the cup 2 (or 102) of the burner 1 (or 100) herein described, the inflow duct 28 of the fuel gas towards the injector for the mixer with radial Venturi effect 9 obtained in the head of the burner 4.
In case such a second core 24 is realized before the step of (d) pouring or pressure-injecting a metal material in the liquid state, it is obviously needed to insert the second core 24 into the mould 40, by coupling it, before the shells of the mould are closed.
Then returning back to the manufacturing method of the cup 2 (or 102) of the gas burner 1 (or 100), after the step (step (d)) of pouring or, preferably, pressure-injecting a metal material in the liquid (molten) state, a step (step (e)) of opening the mould 40, drawing out the core 30 and in case the core 24 and removing the cup 2 (or 102) is provided, after the cup is solidified.
As said, an ending part of the core 30, having at least part of the tubular tapered strickle of the mixer with axial Venturi effect 10, replaces, during the die forming of the cup 2, at least part of the perimetrical surface of the latter, producing at least one hole 118 or 18a, 18b, 18c.
At this point, then, the manufacturing method of the cup 2 (or 102) provides that (step (f)) a plug is applied, or several plug 14a, 14b, 14c, to the hole 118 or holes 18a, 18b, 18c, obtained by the afore said ending part of the core 30 replacing part of the perimetrical surface of the cup 2 or 102.
It has to be noticed that, because of the core 30 provides that the respective jutting portion 22 has a strickle at least in part substantially of a truncated—cone shape, that is with increasing, also if not necessarily even, section, the drawing out of the core 30 itself from the mould 40 has to happen necessarily from the portion with greatest section of such a jutting portion 22 and then at the outlet end, with greatest section, of the mixer with axial Venturi effect 10 realized by such a core 30 during the die forming of the cup 2 or 102. It means that the hole 118, or holes 18a, 18b, 18c, are placed downstream the mixer with axial Venturi effect 10 and then the plug, or plugs 14a, 14b and 14c, which could be made in a synthetic or metal material, have the function to prevent the fluidic communication of the outlet end of such a mixer 10 with the outer environment.
As already mentioned, the ending part of the core 30 replacing part of the perimetrical area of the cup 2, or 102, during the die forming, could make one or several distinct holes in the die formed cup 2 or 102, obviously depending on the strickle of the core 30 engaging with such a perimetrical area of the cup 2 or 102.
So, considering for illustration purpose only the core 30 shown in
In the latter case, as illustrated in
In particular, in the cup 2 herein shown in
It has to be noted that, also if a chip removal machining is herein described intending to communicate fluidically three tubular ducts inside the cup 2 and obtained due to the jutting portion 22 of the core 30, any other chip removal machining inside the tubular region defined by such a jutting portion 22 coming from the step of pouring or injecting the molten metal material into the mould 40 is possible as well, in combination or alternatively to the machining afore described, and then it falls within the protection scope herein demanded.
After such a chip removal machining, whatever it is, the manufacturing method herein described provides, in case of the burner 1, for the positioning of several plugs 14a, 14b, 14c to close the holes 18a, 18b, 18c and thereby to obtain the cup 2 shown in the herein attached
Referring to the core 30 herein represented in
As the person skilled in the art will have appreciated from the description above, the above described manufacturing method of a gas burner 1, 100 allows to simply, effectively and economically obtain a cup 2, 102 provided with a mixer with axial Venturi effect, on which a respective head of the burner 4, 104 could be assembled, for example, with flame-spreaders 5, 6; 105, 106 and respective lids 7, 8; 107, 108.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB12/00960 | 5/17/2012 | WO | 00 | 4/22/2013 |