BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows in vertical section and perspective view a typical storage container, according to the invention.
FIG. 2 shows schematically in cross-section a storage container according to the invention with a fitted lid.
FIG. 3 shows a variant of the lid indicated in FIG. 2.
FIG. 4 is a simplified flow diagram illustrating major steps in the method for manufacturing the storage container.
FIG. 5 is a simplified illustration of major steps of a preferred embodiment for manufacturing the storage container.
FIG. 6 is a simplified flow diagram illustrating major steps in the method for manufacturing the lid to be used with the storage container.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 shows in vertical section and perspective view a half of storage container 1 according to the invention, having an inner container part 2, an outer container part 3, and an inter space container part 4.
It is noted that the inner container part 2 has integral bottom and upright wall. Also, the outer container part 3 has integral bottom and upright wall. An interspace between the inner container part 2 and the outer container part 3 is defined by an interspace container part 4 having a bottom and upright wall integrally made from a radioactive radiation inhibiting material through injection moulding or pressure moulding.
The inner and outer container parts 2, 3 are suitably made from a plastic material, e.g. high density polyethylene, through injection moulding, and the radioactive radiation inhibiting material is suitably one of: lead, lead alloy, tin and tin alloy.
As shown on FIGS. 2 and 3 there is at an upper, outside region of the outer container part 3 provided threads 5 configured to engage threads 6 on a lid 7, and wherein the outer container part has locking means 8 for non-releasable locking engagement with a locking member 9 on said lid when said lid is fully screwed onto the storage container. Said locking means and locking member are merely indicated without illustrating any details. However, it will be visualized that a resilient member and a hook-like member could provide such locking, i.e. a sort of snap function.
The lid 7 has an injection moulded, integral first lid member 7′, 7″ ; 7″′ of plastic material in the form of a top part 7′ and a skirt 7″ depending therefrom, an inside of said skirt 7″ having said threads 6 to enable fitting engagement with the external threads 5 on the storage container. There is in addition at least one recess 10; 11 in said top part, and a second lid member 12; 13 is provided in the form of a solidified radioactive radiation inhibiting material located in an inside region of said first lid member and said at least one recess, said material retained in said at least one recess 10; 11 non-releasably locking the second lid member 12; 13 to the first lid member 7′, 7″; 7″′.
A bottom end 14; 15 portion of the skirt portion of said first lid member 7′, 7″; 7″′ is configured to be able to engage a container lifting device (not shown). Similarly to the storage container parts 2 and 3, the first lid member 7′, 7″; 7″′ is suitably made of a plastic material, e.g. high density polyethylene. The manufacturing of the first lid member is suitably through an injection moulding process. The radioactive radiation inhibiting material is suitably one of lead, lead alloy, tin and tin alloy.
FIG. 4 shows the major steps of the method for manufacturing the long-term storage container for storage of radioactive material to inhibit radioactive radiation therefrom, as disclosed in connection with FIGS. 1, 2 and 3. The method comprises:
a) in step 21 integrally casting in a first mould 31, 31′, 32 (FIG. 5a) through injection moulding via an inlet 33 (FIG. 5a) a first container part 34 (FIG. 5a) having a bottom 34′ and a wall 34″;
b) in step 22 integrally casting in a second mould 35, 36 (FIG. 5b) through injection or pressure moulding via an inlet 37 (FIG. 5b) an interspace container part 38 of said radioactive radiation inhibiting material, said interspace container part 38 having a bottom and a wall and forming a second container part;
c) in step 23 (FIG. 5c) removing a first part 32 (FIG. 5a) of the first mould 31, 31′, 32 (FIG. 5a) which formed a first side wall face 34′ (FIG. 5a) and a first bottom face 34″ (FIG. 5a) of the first integral container part 34 (FIG. 5c);
d) in step 24 (FIG. 5d) removing said inter space container part 38 from the second mould 35, 36,
e) in step 25 (FIGS. 5c and 5d combined) placing said inter space container part 38 in fitting engagement with said first wall face 34′ (FIG. 5a) and said first bottom face 34″ (FIG. 5a) of the first container part 34 (FIG. 5c) to form a first assembly of container parts 34, 38, and with the first container part in engagement with a portion 31′ of a second part 31, 31′ of the first mould;
f) in step 26 (FIG. 5e) locating in a third mould 39 (FIG. 5c); 52, 53 (FIG. 6c) the first assembly of container parts 34, 38 (FIG. 5e) with said inter space container part 38 in spaced relationship to a mould member 40 (FIG. 5c) of the third mould 39, so as to form a cavity 41 between the member 40 and the inter space container part 38, the second part 31, 31′ of the first mould having a portion 31′ inside the first container part 34 to support it during moulding of a third container part, and a top 31 of the second part of the first mould closing off an open end of said third mould member 40;
g) in step 27 (FIG. 5f) through injection moulding via inlet 42 into said cavity 41 integrally casting the third container part 43 (FIG. 5f) having a side wall and a bottom; and
h) in step 28 (FIG. 5g) releasing a second assembly of container parts formed by the first, second and third container parts 34, 38, 43 (FIG. 5g) from the said third mould 39 (FIG. 5c), however noting that also the mould member 31, 31′ is removed.
It is observed that in FIG. 5 the first container part 34 is said inner container part, and that the inter space container part 38 forms the second container part and fits onto the outside of the container part 34.
Suitably in the injection moulding process of the inner and outer container parts there is used a plastic material which is e.g. high density polyethylene.
The inter space container part 38 forming the second container part is moulded from a radioactive radiation inhibiting material selectable from one of: lead, lead alloy, tin and tin alloy.
Following the procedure according to FIG. 5, step 27 (FIG. 5f) in addition provides for threads 5 on the outside of said outer container part, said threads dimensioned to enable fitting engagement with threads on a lid to be fitted by screwing onto the storage container.
Further, the provision of threads on the outer container part also includes provision of locking means configured for non-releasable engagement with a locking member on said lid when said lid is fully screwed onto the container.
With reference to FIG. 6 the method for manufacturing the radioactive radiation inhibiting lid which is suitable for fitting onto a top region of a storage container for long term storage of radioactive material and inhibiting radioactive radiation therefrom, comprises:
a) in step 51 casting in a first mould through injection moulding of a plastic material, e.g. high density polyethylene, an integral first lid member with a top part 7′ and a skirt 7″ depending therefrom, said casting providing on an inside of said skirt threads 6 to enable fitting engagement with external threads 5 on said storage container 1, said casting further providing in said top part at least one recess 10; 11,
b) in step 52 releasing from the first mould said first lid member 7′, 7″; 7″in step 53 filling in liquid form a radioactive radiation inhibiting material in an inside region of said first lid member and said at least one recess, and
c) in step 54 allowing said radioactive radiation inhibiting material, suitably selected from lead, lead alloy, tin and tin alloy, to solidify to form the second lid member 12; 13, material retained in said at least one recess 10; 11 non-releasably locking the second lid member to the first lid member.
The first mould is configured to provide at a lower end 14; 15 of the skirt a lifting or engagement face suitable to cooperate with a container lifting device (not shown) when such device is made to engage a container having a fitted lid.
Step 51 also includes in casting said threads 6 provision of a locking member 9 for non-releasable engagement with locking means 8 on the outside of the storage container when the lid is fully screwed onto the container.