The present invention relates to perpendicular magnetic recording and more particularly to a magnetic the use of a RIEable hard mask to form a write pole with a trailing edge taper.
The heart of a computer's long term memory is an assembly that is referred to as a magnetic disk drive. The magnetic disk drive includes a rotating magnetic disk, write and read heads that are suspended by a suspension arm adjacent to a surface of the rotating magnetic disk and an actuator that swings the suspension arm to place the read and write heads over selected circular tracks on the rotating disk. The read and write heads are directly located on a slider that has an air bearing surface (ABS). The suspension arm biases the slider toward the surface of the disk, and when the disk rotates, air adjacent to the disk moves along with the surface of the disk. The slider flies over the surface of the disk on a cushion of this moving air. When the slider rides on the air bearing, the write and read heads are employed for writing magnetic transitions to and reading magnetic transitions from the rotating disk. The read and write heads are connected to processing circuitry that operates according to a computer program to implement the writing and reading functions.
The write head has traditionally included a coil layer embedded in first, second and third insulation layers (insulation stack), the insulation stack being sandwiched between first and second pole piece layers. A gap is formed between the first and second pole piece layers by a gap layer at an air bearing surface (ABS) of the write head and the pole piece layers are connected at a back gap. Current conducted to the coil layer induces a magnetic flux in the pole pieces which causes a magnetic field to fringe out at a write gap at the ABS for the purpose of writing the aforementioned magnetic transitions in tracks on the moving media, such as in circular tracks on the aforementioned rotating disk.
In recent read head designs, a GMR or TMR sensor has been employed for sensing magnetic fields from the rotating magnetic disk. The sensor includes a nonmagnetic conductive layer, or barrier layer, sandwiched between first and second ferromagnetic layers, referred to as a pinned layer and a free layer. First and second leads are connected to the sensor for conducting a sense current therethrough. The magnetization of the pinned layer is pinned perpendicular to the air bearing surface (ABS) and the magnetic moment of the free layer is located parallel to the ABS, but free to rotate in response to external magnetic fields. The magnetization of the pinned layer is typically pinned by exchange coupling with an antiferromagnetic layer.
The thickness of the spacer layer is chosen to be less than the mean free path of conduction electrons through the sensor. With this arrangement, a portion of the conduction electrons is scattered by the interfaces of the spacer layer with each of the pinned and free layers. When the magnetizations of the pinned and free layers are parallel with respect to one another, scattering is minimal and when the magnetizations of the pinned and free layer are antiparallel, scattering is maximized. Changes in scattering alter the resistance of the spin valve sensor in proportion to cos θ, where θ is the angle between the magnetizations of the pinned and free layers. In a read mode the resistance of the spin valve sensor changes proportionally to the magnitudes of the magnetic fields from the rotating disk. When a sense current is conducted through the spin valve sensor, resistance changes cause potential changes that are detected and processed as playback signals.
In order to meet the ever increasing demand for improved data rate and data capacity, researchers have recently been focusing their efforts on the development of perpendicular recording systems. A traditional longitudinal recording system, such as one that incorporates the write head described above, stores data as magnetic bits oriented longitudinally along a track in the plane of the surface of the magnetic disk. This longitudinal data bit is recorded by a fringing field that forms between the pair of magnetic poles separated by a write gap.
A perpendicular recording system, by contrast, records data as magnetizations oriented perpendicular to the plane of the magnetic disk. The magnetic disk has a magnetically soft underlayer covered by a thin magnetically hard top layer. The perpendicular write head has a write pole with a very small cross section and a return pole having a much larger cross section. A strong, highly concentrated magnetic field emits from the write pole in a direction perpendicular to the magnetic disk surface, magnetizing the magnetically hard top layer. The resulting magnetic flux then travels through the soft underlayer, returning to the return pole where it is sufficiently spread out and weak that it will not erase the signal recorded by the write pole when it passes back through the magnetically hard top layer on its way back to the return pole.
The present invention provides a method for manufacturing a magnetic write head having a write pole with a tapered, stepped trailing edge. The method includes depositing a magnetic write pole material over a substrate, and then forming a magnetic step structure over the magnetic write pole material. A mask structure is then formed, which includes a multilayer hard mask formed over the magnetic write pole material and the magnetic step structure. An ion milling process is then performed to remove a portion of the write pole material to define a write pole. A non-magnetic material can be deposited and ion milling performed to form non-magnetic side gap layer at the sides of the write pole. A multi-step reactive ion milling process can then be performed to remove the remaining hard mask from over the write pole.
The hard mask structure can be a multi-layer hard mask that has an end point detection layer that facilitates removal of the hard mask without damaging the write pole. Furthermore, the hard mask can be advantageously constructed of RIEable materials to facilitate removal after the magnetic step, and non-magnetic side gap layers have been formed.
These and other features and advantages of the invention will be apparent upon reading of the following detailed description of preferred embodiments taken in conjunction with the Figures in which like reference numerals indicate like elements throughout.
For a fuller understanding of the nature and advantages of this invention, as well as the preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings which are not to scale.
The following description is of the best embodiments presently contemplated for carrying out this invention. This description is made for the purpose of illustrating the general principles of this invention and is not meant to limit the inventive concepts claimed herein.
Referring now to
At least one slider 113 is positioned near the magnetic disk 112, each slider 113 supporting one or more magnetic head assemblies 121. As the magnetic disk rotates, slider 113 moves radially in and out over the disk surface 122 so that the magnetic head assembly 121 may access different tracks of the magnetic disk where desired data are written. Each slider 113 is attached to an actuator arm 119 by way of a suspension 115. The suspension 115 provides a slight spring force which biases slider 113 against the disk surface 122. Each actuator arm 119 is attached to an actuator means 127. The actuator means 127 as shown in
During operation of the disk storage system, the rotation of the magnetic disk 112 generates an air bearing between the slider 113 and the disk surface 122 which exerts an upward force or lift on the slider. The air bearing thus counter-balances the slight spring force of suspension 115 and supports slider 113 off and slightly above the disk surface by a small, substantially constant spacing during normal operation.
The various components of the disk storage system are controlled in operation by control signals generated by control unit 129, such as access control signals and internal clock signals. Typically, the control unit 129 comprises logic control circuits, storage means and a microprocessor. The control unit 129 generates control signals to control various system operations such as drive motor control signals on line 123 and head position and seek control signals on line 128. The control signals on line 128 provide the desired current profiles to optimally move and position slider 113 to the desired data track on disk 112. Write and read signals are communicated to and from write and read heads 121 by way of recording channel 125.
With reference to
With reference now to
The write head 306 includes a magnetic write pole 314 and a magnetic return pole 316. The write pole 314 can be formed upon a magnetic shaping layer 320, and a magnetic back gap layer 318 magnetically connects the write pole 314 and shaping layer 320 with the return pole 316 in a region removed from the air bearing surface (ABS). A write coil 322 (shown in cross section in
In operation, when an electrical current flows through the write coil 322, a resulting magnetic field causes a magnetic flux to flow through the return pole 316, back gap 318, shaping layer 320 and write pole 314. This causes a magnetic write field to be emitted from the tip of the write pole 314 toward a magnetic medium 332. The write pole 314 has a cross section at the ABS that is much smaller than the cross section of the return pole 316 at the ABS. Therefore, the magnetic field emitting from the write pole 314 is sufficiently dense and strong that it can write a data bit to a magnetically hard top layer 330 of the magnetic medium 332. The magnetic flux then flows through a magnetically softer under-layer 334, and returns back to the return pole 316, where it is sufficiently spread out and weak that it does not erase the data bit recorded by the write pole 314. A magnetic pedestal 336 may be provided at the air bearing surface ABS and attached to the return pole 316 to prevent stray magnetic fields from the bottom leads of the write coil 322 from affecting the magnetic signal recorded to the medium 332.
In order to increase write field gradient, and therefore increase the speed with which the write head 306 can write data, a trailing, wrap-around magnetic shield 338 can be provided. The trailing, wrap-around magnetic shield 338 is separated from the write pole by a non-magnetic layer 339. The shield 338 also has side shielding portions that are separated from sides of the write pole by non-magnetic side gap layers (not shown). The trailing shield 338 attracts the magnetic field from the write pole 314, which slightly cams the angle of the magnetic field emitting from the write pole 314. This canting of the write field increases the speed with which write field polarity can be switched by increasing the field gradient. A trailing magnetic return pole 340 can be provided and can be magnetically connected with the trailing shield 338. Therefore, the trailing return pole 340 can magnetically connect the trailing magnetic shield 338 with the back portion of the write pole 302, such as with the back end of the shaping layer 320 and with the back gap layer 318. The magnetic trailing shield is also a second return pole so that in addition to magnetic flux being conducted through the medium 332 to the return pole 316, the magnetic flux also flows through the medium 332 to the trailing return pole 340.
In order to increase data density in a magnetic data recording system, the bit length of the recorded data bits must be decreased. This requires a reduction of the write pole thickness as measured from the trailing edge to the leading edge of the write pole 314. However, this reduction in write pole thickness risks magnetically saturating the write pole so that magnetic flux to the tip of the write pole 314 can become choked off, thereby reducing write field strength. In order to mitigate this, the write pole 314 has a tapered, stepped trailing edge, which helps to funnel magnetic flux to the tip of the write pole 314, thereby avoiding saturation of the write pole 314. This maximizes write field strength at very small bit sizes.
With reference now to
Then, with reference to
Then, with reference to
An image transfer layer 710 is deposited over the laminated hard mask 702. The image transfer layer 710 can be a soluble polyimide material such as DURAMIDE®. A second hard mask structure 712, which can be a material such as SiO2 is deposited over the image transfer layer and a photoresist mask 714 can be deposited over the second hard mask.
The photoresist layer is then photolithographically patterned and developed to form a desired write pole shape. This can be seen more clearly with reference to
Then, an ion milling is performed to remove portions of the hard mask 702 and magnetic write pole material 404 that are not protected by the above mask layers 710, 712, 714. The photoresist mask 714 and second hard mask 712 and a portion of the image transfer layer 710 will be consumed by the is ion milling process, leaving a structure such as that shown in
Then, with reference to
As can be seen in
However, because the hard mask layers 704, 708 are advantageously constructed of a RIEable material, a reactive ion etching can be performed to remove the layers 704, 706, 708. The reactive ion etching is a three step reactive ion etching. First a RIE is performed using an O2 or CO2 based chemistry. This removes the layer 708. Then, a second RIE is performed using a Fluorine based chemistry. This removes the end point detection layer. Then a third RIE is performed, again using an O2 or CO2 based chemistry. This results in a structure as shown in
Then, with reference to
While various embodiments have been described, it should be understood that they have been presented by way of example only, and not limitation. Other embodiments falling within the scope of the invention may also become apparent to those skilled in the art. Thus, the breadth and scope of the invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5599749 | Hattori | Feb 1997 | A |
6300202 | Hobbs et al. | Oct 2001 | B1 |
6762909 | Albrecht et al. | Jul 2004 | B2 |
6920016 | Yamakura et al. | Jul 2005 | B2 |
7081041 | Guthrie et al. | Jul 2006 | B1 |
20030034497 | Yamazaki et al. | Feb 2003 | A1 |
20040082176 | Kane et al. | Apr 2004 | A1 |
20040205958 | Grynkewich et al. | Oct 2004 | A1 |
20040228033 | Aoki et al. | Nov 2004 | A1 |
20050007217 | Deligianni et al. | Jan 2005 | A1 |
20050023693 | Fitzsimmons et al. | Feb 2005 | A1 |
20050044699 | Khera et al. | Mar 2005 | A1 |
20050219744 | Feldbaum et al. | Oct 2005 | A1 |
20050219747 | Hsu et al. | Oct 2005 | A1 |
20050245087 | Sasagawa et al. | Nov 2005 | A1 |
20050277299 | Le et al. | Dec 2005 | A1 |
20060002024 | Le et al. | Jan 2006 | A1 |
20060023352 | Le et al. | Feb 2006 | A1 |
20060044677 | Li et al. | Mar 2006 | A1 |
20060174474 | Le | Aug 2006 | A1 |
20060275997 | Ikeda | Dec 2006 | A1 |
20070006455 | Belov | Jan 2007 | A1 |
20070020934 | Gaidis et al. | Jan 2007 | A1 |
20070042603 | Kropewnicki et al. | Feb 2007 | A1 |
20070211384 | Hsiao et al. | Sep 2007 | A1 |
20080100959 | Feldbaum et al. | May 2008 | A1 |
20080112079 | Fullerton et al. | May 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100155363 A1 | Jun 2010 | US |