The present invention relates to a method for manufacturing a package, wherein the package has a blown foam structure and is of a material at least comprising natural polymers such as starch.
It is known to manufacture a package of a material at least comprising natural polymers such as starch and having a blown foam structure. Such a package may have a minimum weight and may be used to receive and hold fragile and/or breakable products. Such packages may be manufactured by moulding such packages from a bio-polymer material from renewable resources, such as a starch based material. A method for manufacturing such a package is known from practice. Such method may for instance comprise supplying a starch based starting material comprising water as blowing agent under pressure into a mould. The mass in the mould is heated such as to give rise to gelatinization and cross-linking of the natural polymers such that the product is formed. When manufacturing the package by means of such method, the package needs to have a withdrawable shape and suitable clearance angles have to be chosen to enable removal of the package from the mould cavity without damaging the package.
Alternative packages are also known from practice such as packages made from cardboard, plastics and wood. Such packages may for instance be used to package electronics and/or luxury goods and therefore need to have an appealing character. Said packages may be manufactured by different manufacturing methods resulting in a package of which the outer corners may have substantially sharp angles. Such packages can be stacked on top of each other easily, which is advantageous with respect to transporting costs of products provided in such packages. However, the manufacturing costs for manufacturing such packages may be relatively high. Besides, manufacturing of a package from a bio-polymer material from renewable resources provides a more environmental friendly alternative.
In view of the above, it is an object of the invention to provide an improved method for manufacturing a package from a material at least comprising natural polymers such as starch. More in particular, it is an object of the invention to provide a method for manufacturing a package from a material at least comprising natural polymers such as starch, wherein the package characteristics, such as shape and appearance, are comparable with packages manufactured from cardboard, plastics and/or wood.
Therefore, in a first aspect, a method according to the invention for manufacturing a package having a blown foam structure and said package being of a material at least comprising natural polymers such as starch, is provided. The method may comprise providing a mould with a mould cavity and inserting a starch batter in said mould cavity, moulding of a blank in said mould cavity from said starch batter. The blank may comprise a bottom panel and first and second side wall panels pivotally connected to the bottom panel along respective folding lines extending between said bottom panel and the respective first and second sidewall panels. The method can further comprise removing of the blank from the mould cavity and folding of the respective side wall panels along the respective folding lines in a substantially upward position such that adjacent side wall panels abut each other and form a package sidewall extending along a perimeter of said bottom, said sidewall and the bottom enclosing a package inner space.
By manufacturing a package from a bio-polymer material by first moulding a blank and subsequently folding said blank to obtain a package, the package may be provided with sharp outer corners and may have substantially flat outer surfaces. Consequently, such package may be an alternative to packages of cardboard, plastics, wood and the like material. Due to the shape of said package, the package has taut lines and may be stacked easily. Due to said manufacturing method, the side wall panels may be positioned substantially perpendicular to the bottom panel or to the other side wall panels, thus forming an angle of approximately 90 degrees. However, the panels may include any other angle, dependent on the design of the blank and the package. Besides, the package manufactured with the method according to the invention has the advantage that it is made from a biodegradable material and thus is a sustainable alternative to the packages manufactured from the above mentioned materials. Furthermore, the package manufactured by the method according to the invention has a minimum weight which is advantageous with respect to transportation costs of packaged products.
To be able to fold the side wall panels in the upright position, thus in a position in which the side wall panels extend from the bottom panel in a direction facing away from said bottom panel, the respective folding lines may be formed by providing recessed areas in the blank during moulding of the blank. The recessed areas may be formed in the blank by providing little space between the respective mould parts of the mould such that the skins that are formed on both opposing outer surfaces of the blank are provided close to each other. Consequently, little material is provided in between said skins, enabling folding of the side wall panels and at the same time thereby minimizing the risk of cracking of the skin during the folding operation.
The recessed area may be also be formed by compressing the area of the folding lines to decrease the thickness of the blank at that specific location. Compression of the area may also be applied after providing the recessed area in the blank due to the shape of the mould.
Preferably, the density of the material at a location of the folding lines, i.e. in between the skins, is higher than the density of the material in the blank at locations other than at the folding line locations. Preferably, the thickness of the blank at a location of the folding lines is smaller than the thickness of the blank at locations other than at the folding lines locations.
The side wall panels may be interconnected, at least opposing edges of adjacent side wall panels may be interconnected. By interconnecting the respective side wall panels, the package will be provided with the desired strength, such as the strength in a direction extending substantially parallel to the corners of the side wall panels.
In a further aspect, the method according to the invention can be characterized in that the blank may be provided with a laminate layer on at least one of the blank surfaces. By providing the blank with a laminate layer such that an outer surface of the package is laminated, for instance with a paper or a plastic layer, the package may be provided with a print, for instance a full color print. Such print may be provided on the laminate layer before connection of said layer to the blank surface.
Additionally or alternatively, at least one of the outer surfaces of the blank may be provided with a text and/or image, for instance by means of printing. Due to the material of the blank, the outer surface may be substantially smooth which enables direct printing thereon.
The blank may, alternatively or additionally, comprise a laminate layer on the other one of the blank surfaces, for instance on the inner surface of the package. The side wall panels may be interconnected by means of the at least one laminate layer, for instance by means of adhering part of the laminate layer to another, opposing part of said laminate layer.
In another aspect of the method according to the invention, at least one of the bottom panel and/or the first side wall panels may be provided with a protrusion in the same method step in which the blank is moulded. The at least one protrusion is integrally formed with the blank. In this description, integrally formed is understood to mean formed with material common to the rest of the blank and the connection of respective parts having no mechanical joints. Thus, the blank is a single integrally formed piece. In this description, single integrally formed piece is understood to mean having no parts that separate from the blank during normal operation and containing no parts that are not integrally formed.
The method according to the invention thus enables providing the package with one or more corner reinforcements, product retainers, package inner space dividers and the like, formed by the protrusions, in the moulding step of the manufacturing method. Consequently, the amount of method steps used for manufacturing said package is minimized, which is advantageous in view of the manufacturing costs.
A further advantage of the fact that the protrusions are provided on the blank is that the product to be packaged can be positioned with respect to the bottom panel, or if applicable with respect to any other panel of the blank, before folding of the side panels in the upright position. After positioning of the product, the package may be formed by folding of the blank and fixating of the respective panels to each other, thereby enclosing and/or fixating the product in the package. Such a package may thus have a tamper evident construction.
The invention also relates to a blank for forming a package and to a package set up from a blank, wherein the package is manufactured by means of the above described manufacturing method.
The aforementioned and other features and advantages of the invention will be more fully understood from the following detailed description of certain embodiments of the invention, taken together with the accompanying drawings, which are meant to illustrate and not to limit the invention.
In this specification, identical or corresponding parts may have identical or corresponding reference numerals. Where required, for a better understanding of a Figure, reference is made to the description of other Figures. Combinations of (parts of) the embodiments shown are expressly understood to also be incorporated and described herein.
Due to the construction of the package 10 according to the invention, it is possible to set up a package 10 from the blank 1 which package has substantially sharp outer corners 14. Said outer corners 14 extend between the side wall panels 3, 4 and/or between the side wall panels 3, 4 and the bottom panel 2. Since the outer corners 14 are sharp and thus have a very small radius, the package 10 has an appearance that matches packages of other material, such as plastic packages or wooden packages. Therefore, the package 10 according to the invention provides a suitable alternative for the above mentioned packages. The package 10 may for instance be used to package electronic devices, such as telephones, or other fragile and/or breakable products. Due to the laminate layer 11 that is provided on an outer surface 8 of the package 10, the starch batter to be used to mould the blank 1 may comprise fewer fibres than without using said laminate layer. Besides, the starch batter may be a relatively thin batter. This is advantageous in view of the costs of the starting material.
In
In
Although illustrative embodiments of the present invention have been described above, in part with reference to the accompanying drawings, it is to be understood that the invention is not limited to these embodiments. Variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. It will be clear, for example, that the products that are manufactured by means of the method according to the invention can be of different shapes and dimensions. The blanks can be provided with different protrusions, i.e. protrusions placed on different locations on the respective panels and/or protrusions having different shapes dependent on the function of such protrusions. For instance packages intended for receiving electronic products may have a different kind of protrusions than packages intended for receiving food products or other kinds of products. Furthermore, the starch batter used for moulding of the blank may comprise different ingredients. The laminate layer may be of different materials and may be, for instance in dependence of the product to be packaged, provided on a desired location on the blank and thus on the package.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment in the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, it is noted that particular features, structures or characteristics of one or more embodiments may be combines in any suitable manner to form new, not explicitly described embodiments
Number | Date | Country | Kind |
---|---|---|---|
2010835 | May 2013 | NL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NL2014/050317 | 5/20/2014 | WO | 00 |