The present disclosure relates generally to wind turbines, and more particularly to a method for manufacturing a structural component of a blade segment for a rotor blade of a wind turbine.
Wind power is considered one of the cleanest, most environmentally friendly energy sources presently available, and wind turbines have gained increased attention in this regard. A modern wind turbine typically includes a tower, a generator, a gearbox, a nacelle, and a rotor having a rotatable hub with one or more rotor blades. The rotor blades capture kinetic energy of wind using known airfoil principles. The rotor blades transmit the kinetic energy in the form of rotational energy so as to turn a shaft coupling the rotor blades to a gearbox, or if a gearbox is not used, directly to the generator. The generator then converts the mechanical energy to electrical energy that may be deployed to a utility grid.
The rotor blades generally include a suction side shell and a pressure side shell typically formed using molding processes that are bonded together at bond lines along the leading and trailing edges of the blade. Further, the pressure and suction shells are relatively lightweight and have structural properties (e.g., stiffness, buckling resistance and strength) which are not configured to withstand the bending moments and other loads exerted on the rotor blade during operation. Thus, to increase the stiffness, buckling resistance and strength of the rotor blade, the body shell is typically reinforced using one or more structural components (e.g. opposing spar caps with a shear web configured therebetween) that engage the inner pressure and suction side surfaces of the shell halves. The spar caps and/or shear web may be constructed of various materials, including but not limited to glass fiber laminate composites and/or carbon fiber laminate composites.
In addition, as wind turbines continue to increase in size, the rotor blades also continue to increase in size. As such, modern rotor blades may be constructed in segments that are joined together at one or more joints. Accordingly, certain jointed rotor blades include a first blade segment having a beam structure that is received within a receiving section of a second blade segment that is further secured together via one or more span-wise and chord-wise extending pins that transfer the blade bending moment from one segment to the other. Moreover, the reactions from the pins are transferred to various bearing blocks at the joint locations via one or more bushings.
Manufacturing the large structural components of the blade segments can be complex. For example, in certain instances, the beam structure and/or the receiving section may include a metal mesh embedded therein for lightning protection. As such, for current manufacturing processes, the metal mesh must be laid into the mold of the structural component adjacent to one or more fabric layers thereof. In addition, the fabric layers need to be tensioned in ordered to ensure a consolidated layup. As the metal mesh is less pliable and stiffer than the fabric layers, the edges of the metal mesh tend to catch and snag on the fabric layers during tensioning. Therefore, certain quality issues (such as wrinkles) can occur in the structural component during layup and tensioning the fabric.
Accordingly, the present disclosure is directed to methods for manufacturing a structural component of a blade segment for a rotor blade of a wind turbine that addresses the aforementioned issues.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one aspect, the present disclosure is directed to a method for preventing manufacturing defects in a manufacturing process of a structural component of a blade segment of a rotor blade of a wind turbine. The method includes providing one or more metal mesh layers having one or more ends. The method also includes covering the end(s) of the metal mesh layer(s) with a cover material. Further, the method includes placing the metal mesh layer(s) with the covered end(s) adjacent to one or more fiber layers. Moreover, the method includes forming the structural component with the metal mesh layer(s) having the covered end(s) and the fiber layer(s).
In one embodiment, the method may include tensioning, e.g. by means of expansion within a mold or otherwise, the fiber layer(s) after placing the metal mesh layer(s) with the covered end(s) adjacent to the fiber layer(s). In another embodiment, the cover material may include, for example, a composite fabric material (such as a chopped strand mat (CSM), a biax fabric, or a prepreg material), a prefabricated composite part, an adhesive, a resin, and/or any other suitable liquid material that hardens after application so as to provide a suitable cover to the edge(s) of the metal mesh layer(s). In further embodiments, the metal mesh layer(s) may be constructed, at least in part, of copper or any other suitable metal material.
In additional embodiments, forming the structural component with the metal mesh layer(s) having the covered end(s) and the fiber layer(s) may include placing the metal mesh layer(s) having the covered end(s) and the fiber layer(s) into a mold of the structural component and infusing the metal mesh layer(s) having the covered end(s) and the fiber layer(s) together via a resin material. In another embodiment, forming the structural component with the metal mesh layer(s) having the covered end(s) and the fiber layer(s) may include placing one or more structural features into the mold and infusing the structural feature(s) with the metal mesh layer(s) having the covered end(s) and the fiber layer(s) together via the resin material.
In further embodiments, the structural component may include a beam structure of a blade segment, a receiving section of the blade segment, or similar. In certain embodiments, the resin material may include a thermoset resin or a thermoplastic resin.
In several embodiments, the metal mesh layer(s) are configured to provide lightning protection to the structural component during operation of the wind turbine and/or structural support to the structural component.
In another aspect, the present disclosure is directed to a method for manufacturing a structural component of a blade segment for a rotor blade of a wind turbine. The method includes providing a mold of the structural component. The method also includes laying up one or more fiber layers in or on the mold. As such, the fiber layer(s) form a surface of the structural component. Further, the method includes providing one or more metal mesh layers having one or more ends. Moreover, the method includes providing a cover material to the end(s) of the metal mesh layer(s). In addition, the method includes placing the metal mesh layer(s) with the covered end(s) atop the fiber layer(s). Thus, the method includes infusing the fiber layer(s) and the metal mesh layer(s) together via a resin material so as to form the structural component. It should be understood that the method may further include any of the additional steps and/or features as described herein.
In yet another aspect, the present disclosure is directed to a structural component for a blade segment of a rotor blade of a wind turbine. The structural component includes one or more metal mesh layers having one or more ends, a cover material covering the end(s) of the metal mesh layer(s), one or more fiber layers adjacent to the metal mesh layer(s), and a resin material that secures the metal mesh layer(s), the cover material, and the fiber layer(s) together. It should be understood that the structural component may further include any of the additional features as described herein.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring now to the drawings,
Referring now to
Referring now to
Moreover, as shown, the first blade segment 30 may include one or more first pin joints towards a first end 54 of the beam structure 40. In one embodiment, the pin joint may include a pin that is in a tight interference fit with a bushing. More specifically, as shown, the pin joint(s) may include one pin tube 52 located on the beam structure 40. Thus, as shown, the pin tube 52 may be oriented in a span-wise direction. Further, the first blade segment 30 may also include a pin joint slot 50 located on the beam structure 40 proximate to the chord-wise joint 34. Moreover, as shown, the pin joint slot 50 may be oriented in a chord-wise direction. In one example, there may be a bushing within the pin joint slot 50 arranged in a tight interference fit with a pin tube or pin (shown as pin 53 in
It is to be noted that the pin tube 52 located at the first end of the beam structure 40 may be separated span-wise with the multiple second pin joint tubes 56, 58 located at the chord-wise joint 34 by an optimal distance D. This optimal distance D may be such that the chord-wise joint 34 is able to withstand substantial bending moments caused due to shear loads acting on the chord-wise joint 34. In another embodiment, each of the pin joints connecting the first and second blade segments 30, 32 may include an interference-fit steel bushed joint.
Referring now to
Referring now to
Referring now to
Referring now to
As shown at (102), the method 100 includes providing a mold 150 of the beam structure 40. For example, as shown in
As shown at (106), the method 100 includes providing one or more metal mesh layers 156 having one or more ends 158. Thus, the metal mesh layer(s) 156 are configured to provide lightning protection to the beam structure 40 during operation of the wind turbine 10 and/or structural support to the beam structure 40. For example, as shown in
Thus, referring back to
As shown at (110), the method 100 includes placing the metal mesh layer(s) 156 with the covered end(s) 158 atop the fiber layer(s) 154. For example, as shown in
In one embodiment, the method 100 may include tensioning the fiber layer(s) 154 after placing the metal mesh layer(s) 156 with the covered end(s) 158 adjacent to the fiber layer(s) 154. In such embodiments, the cover material 160 is configured to prevent snagging or tearing of the fiber layer(s) 154 against the metal mesh layer(s) 156.
Referring back to
In certain embodiments, the resin material 162 may include a thermoset resin or a thermoplastic resin. The thermoplastic materials as described herein may generally encompass a plastic material or polymer that is reversible in nature. For example, thermoplastic materials typically become pliable or moldable when heated to a certain temperature and returns to a more rigid state upon cooling. Further, thermoplastic materials may include amorphous thermoplastic materials and/or semi-crystalline thermoplastic materials. For example, some amorphous thermoplastic materials may generally include, but are not limited to, styrenes, vinyls, cellulosics, polyesters, acrylics, polysulphones, and/or imides. More specifically, exemplary amorphous thermoplastic materials may include polystyrene, acrylonitrile butadiene styrene (ABS), polymethyl methacrylate (PMMA), glycolised polyethylene terephthalate (PET-G), polycarbonate, polyvinyl acetate, amorphous polyamide, polyvinyl chlorides (PVC), polyvinylidene chloride, polyurethane, or any other suitable amorphous thermoplastic material. In addition, exemplary semi-crystalline thermoplastic materials may generally include, but are not limited to polyolefins, polyamides, fluropolymer, ethyl-methyl acrylate, polyesters, polycarbonates, and/or acetals. More specifically, exemplary semi-crystalline thermoplastic materials may include polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polypropylene, polyphenyl sulfide, polyethylene, polyamide (nylon), polyetherketone, or any other suitable semi-crystalline thermoplastic material.
Further, the thermoset materials as described herein may generally encompass a plastic material or polymer that is non-reversible in nature. For example, thermoset materials, once cured, cannot be easily remolded or returned to a liquid state. As such, after initial forming, thermoset materials are generally resistant to heat, corrosion, and/or creep. Example thermoset materials may generally include, but are not limited to, some polyesters, some polyurethanes, esters, epoxies, or any other suitable thermoset material.
In addition, the fiber layers described herein may include, for example, glass fibers, carbon fibers, polymer fibers, wood fibers, bamboo fibers, ceramic fibers, nanofibers, metal fibers, or combinations thereof. In addition, the direction or orientation of the fibers may include quasi-isotropic, multi-axial, unidirectional, biaxial, triaxial, or any other another suitable direction and/or combinations thereof.
Referring now to
As shown at (202), the method 200 may include providing one or more metal mesh layers 156 having one or more ends 158. As shown at (204), the method 200 may include covering the end(s) 158 of the metal mesh layer(s) 156 with a cover material 160. As shown at (206), the method 200 may include placing the metal mesh layer(s) 156 with the covered end(s) 158 adjacent to one or more fiber layers 154. As shown at (208), the method 200 may include forming the beam structure 40 with the metal mesh layer(s) 156 having the covered end(s) 158 and the fiber layer(s) 154.
The skilled artisan will recognize the interchangeability of various features from different embodiments. Similarly, the various method steps and features described, as well as other known equivalents for each such methods and feature, can be mixed and matched by one of ordinary skill in this art to construct additional systems and techniques in accordance with principles of this disclosure. Of course, it is to be understood that not necessarily all such objects or advantages described above may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the systems and techniques described herein may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objects or advantages as may be taught or suggested herein.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/064847 | 12/11/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/122867 | 6/18/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
851196 | Bevans et al. | Apr 1907 | A |
4474536 | Gougeon et al. | Oct 1984 | A |
4643646 | Hahn et al. | Feb 1987 | A |
4732542 | Hahn et al. | Mar 1988 | A |
4737618 | Barbier et al. | Apr 1988 | A |
5281454 | Hanson | Jan 1994 | A |
7334989 | Arelt | Feb 2008 | B2 |
7344360 | Wetzel | Mar 2008 | B2 |
7901188 | Llorente Gonzalez et al. | Mar 2011 | B2 |
7922454 | Riddell | Apr 2011 | B1 |
7927077 | Olson | Apr 2011 | B2 |
7997874 | van der Bos | Aug 2011 | B2 |
7998303 | Baehmann et al. | Aug 2011 | B2 |
8123488 | Finnigan et al. | Feb 2012 | B2 |
8297932 | Arocena De La Rua et al. | Oct 2012 | B2 |
8348622 | Bech | Jan 2013 | B2 |
8356982 | Petri Larrea et al. | Jan 2013 | B2 |
8376713 | Kawasetsu et al. | Feb 2013 | B2 |
8388316 | Arocena De La Rua et al. | Mar 2013 | B2 |
8517689 | Kyriakides et al. | Aug 2013 | B2 |
8919754 | Schibsbye | Dec 2014 | B2 |
9291151 | Mironov | Mar 2016 | B2 |
9669589 | Zamora Rodriguez et al. | Jun 2017 | B2 |
20070018049 | Stuhr | Jan 2007 | A1 |
20070074892 | Hibbard | Apr 2007 | A1 |
20070194491 | Krogager | Aug 2007 | A1 |
20070194991 | Mohamadi | Aug 2007 | A1 |
20070253824 | Eyb | Nov 2007 | A1 |
20090116962 | Pedersen et al. | May 2009 | A1 |
20090155084 | Livingston et al. | Jun 2009 | A1 |
20090162208 | Zirin et al. | Jun 2009 | A1 |
20090257881 | Ostergaard Kristensen et al. | Oct 2009 | A1 |
20100132884 | Baehmann et al. | Jun 2010 | A1 |
20100215494 | Bech et al. | Aug 2010 | A1 |
20100304170 | Frederiksen | Dec 2010 | A1 |
20110052403 | Kawasetsu et al. | Mar 2011 | A1 |
20110081247 | Hibbard | Apr 2011 | A1 |
20110081248 | Hibbard | Apr 2011 | A1 |
20110091326 | Hancock | Apr 2011 | A1 |
20110158788 | Bech et al. | Jun 2011 | A1 |
20110158806 | Arms et al. | Jun 2011 | A1 |
20110159757 | Percival | Jun 2011 | A1 |
20110229336 | Richter et al. | Sep 2011 | A1 |
20120093627 | Christenson et al. | Apr 2012 | A1 |
20120153539 | Henderson | Jun 2012 | A1 |
20120163990 | Shimono | Jun 2012 | A1 |
20120196079 | Brauers et al. | Aug 2012 | A1 |
20120213642 | Wang et al. | Aug 2012 | A1 |
20120269643 | Hibbard et al. | Oct 2012 | A1 |
20120308396 | Hibbard | Dec 2012 | A1 |
20130040151 | Jeromerajan et al. | Feb 2013 | A1 |
20130049249 | Frankowski et al. | Feb 2013 | A1 |
20130064663 | Loth et al. | Mar 2013 | A1 |
20130129518 | Hayden et al. | May 2013 | A1 |
20130149154 | Kuroiwa et al. | Jun 2013 | A1 |
20130164133 | Grove-Nielsen | Jul 2013 | A1 |
20130177433 | Fritz et al. | Jul 2013 | A1 |
20130189112 | Hedges et al. | Jul 2013 | A1 |
20130189114 | Jenzewski et al. | Jul 2013 | A1 |
20130219718 | Busbey et al. | Aug 2013 | A1 |
20130224032 | Busbey et al. | Aug 2013 | A1 |
20130236307 | Stege | Sep 2013 | A1 |
20130236321 | Olthoff | Sep 2013 | A1 |
20140286780 | Lemos et al. | Sep 2014 | A1 |
20150183171 | Kline et al. | Jul 2015 | A1 |
20150204200 | Eyb et al. | Jul 2015 | A1 |
20150369211 | Merzhaeuser | Dec 2015 | A1 |
20150377217 | Sandercock et al. | Dec 2015 | A1 |
20170082087 | Yarbrough et al. | Mar 2017 | A1 |
20170268479 | Caruso et al. | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
105690790 | Jun 2016 | CN |
2186622 | May 2010 | EP |
3144526 | Mar 2017 | EP |
2710871 | Apr 1995 | FR |
2477847 | Aug 2011 | GB |
WO2009034291 | Mar 2009 | WO |
WO2009077192 | Jun 2009 | WO |
WO2010023299 | Mar 2010 | WO |
WO2011064553 | Jun 2011 | WO |
WO2011066279 | Jun 2011 | WO |
WO2015051803 | Apr 2015 | WO |
WO2015185066 | Dec 2015 | WO |
Entry |
---|
International Search Report for PCT/US2018/064847, dated Sep. 19, 2019. |
Foreign Office Action for CN application No. 201880100201.5, dated Jul. 6, 2022. |
The machine translation of the JP foreign office action for JP application No. 2021-532197, dated Sep. 20, 2022, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20220024162 A1 | Jan 2022 | US |