The present invention is directed to the field of transdermal patches, and specifically to a method for manufacturing a transdermal patch.
Transdermal patches are drug delivery systems that typically include a backing material, a drug and an adhesive to adhere the patch to skin. Conventional uses include delivering a broad assortment of therapeutic agents, including nicotine and pain medications.
A typical conventional patch is shown in
The conventional process for producing the prior art patches includes providing a spool of web material 170 that is made up of such subsidiary layers as are desired. Web material moves along a conveyor to a cutting station, where generally rectangular cuts 160 are made to form transdermal patches 100 as shown in
As shown in
The substantial waste material 175 that this process produces and then discards is very wasteful of the therapeutic agents that are at the heart of the transdermal patch.
A substantial fraction of the cost of a transdermal patch lies in the cost of the drug that it delivers. Known methods for manufacturing these patches begin with a continuous web that is a composite of the layers noted above, including the layer that carries the therapeutic agent, and the release liner film covering the exposed adhesive. The continuous web has indeterminate length, typically more than one thousand meters, and can have a width up to about one meter. This continuous web is converted to individual patches, the finished product, by punching the patch from the continuous web to the required size and shape and individually packaging the punched finished dosage, the patch, into a pouch. The longest dimension of the patch is much less than the width of the web so that many individual units are punched across the width. Punching of patches from this continuous web often results in significant losses of the drug due to spaces that may be required between the punched areas of the web. Because the layer that contains the drug is continuous, and because of losses of this layer in the process for punching the continuous web into individual dosages, an inefficient punching process can substantially increase production costs.
There remains a need for a method of manufacturing transdermal patches that more efficiently utilizes the therapeutic agents contained within the starting continuous web.
The present invention relates to a method of manufacturing a transdermal device from a continuous layered web which is conveyed linearly. Upper layers of the web can be kiss-cut along both horizontal lines, lengthwise down the web, and vertical lines, crosswise across the web. The lines can be cut down from a backing side of the transdermal device to the depth of the underlying strippable release liner, leaving the strippable release liner uncut and intact. Alternatively, the horizontal and vertical cuts can be through-cuts, which cut through all layers of the web. Several patterns of kiss-cuts and through-cuts, applied to the continuous web, are described.
Individual portions of the web are then peeled away from the liner of the starting web by machinery with a sharp edge that raises the front rim of the forward moving portion. For example, the individual portions can be a patch being generally rectangular in shape with rounded corners as defined by a punch employed to stamp the individual portions. The front rim of the individual portions then contacts a second web of strippable release liner that moves faster than the first web, resulting in transfer of the entire individual portions to the second web. As a continuous process applied to a line of contiguous patches, this results in a lateral spacing apart of the transdermal patches on this second web along the direction of movement of the second web. The patches in the second web may be through-cut without transfer to a new release liner yielding a finished product with the strippable release liner contiguous with the patch. While this process uses more release liner material, it conserves use of the more expensive drug bearing material. The rounded corners of the patch are cut during the process, as kiss-cuts, and the drug material filling the rounded corners is removed as waste. The rounded corners can be cut before or after the horizontal through-cuts down the length of the web.
In some cases, the vertical kiss-cut does not result in a clean separation of the contiguous patches, because the adjacent adhesive surfaces along the kiss-cut re-adhere after the kiss-cut. Each of lines can include a pair of lines leaving a thin strip of waste material between the patches. The thin strip is removed with the rounded corners leaving a narrow space between contiguous patches, preventing re-adherence between the contiguous patches. This process yields slightly more waste than the process with the single kiss-cut between the patches, but substantially reduces waste relative to the conventional process.
The process of the present invention provides a transdermal patch formed by efficient use of the drug-in-adhesive or other drug-carrying layer, thereby reducing waste of the most expensive portion of the transdermal patch.
The invention will be more fully described by reference to the following drawings.
Reference will now be made in greater detail to a preferred embodiment of the invention, an example of which is illustrated in the accompanying drawings. Wherever possible, the same reference numerals will be used throughout the drawings and the description to refer to the same or like parts.
The method for producing transdermal devices of the present invention includes providing layered web material 170 as shown in
Starting web 200 can be cut into one or more separate webs 300, each made up of a series of adjoining segments 302 that are delimited by vertical lines 210 which can be kiss-cut as shown in
As shown in
In some cases, the vertical kiss-cut 210 does not result in a clean separation of the contiguous patches, because the adjacent adhesive surfaces along the kiss-cut re-adhere after the kiss-cut.
It is to be understood that the above-described embodiments are illustrative of only a few of the many possible specific embodiments, which can represent applications of the principles of the invention. Numerous and varied other arrangements can be readily devised in accordance with these principles by those skilled in the art without departing from the spirit and scope of the invention.
Number | Date | Country | |
---|---|---|---|
Parent | 15491419 | Apr 2017 | US |
Child | 15838837 | US | |
Parent | 15492146 | Apr 2017 | US |
Child | 15491419 | US |